Building insulation materials
Building insulation materials are the building materials which form the thermal envelope of a building or otherwise reduce heat transfer.
Insulation may be categorized by its composition, form, structural contribution, functional mode, resistance to heat transfer, environmental impacts, and more. Sometimes a thermally reflective surface called a radiant barrier is added to a material to reduce the transfer of heat through radiation as well as conduction. The choice of which material or combination of materials is used depends on a wide variety of factors. Some insulation materials have health risks, some so significant the materials are no longer allowed to be used but remain in use in some older buildings such as asbestos fibers and urea.
Consideration of materials used
Factors affecting the type and amount of insulation to use in a building include:- Thermal conductivity
- Moisture sensitivity
- Compressive strength
- Ease of installation
- Durability – resistance to degradation from compression, moisture, decomposition, etc.
- Ease of replacement at end of life
- Cost effectiveness
- Toxicity
- Flammability
- Environmental impact and sustainability
- The average climate conditions in the geographical area the building is located
- The temperature the building is used at
Spray foam
Spray foam is a type of insulation that is sprayed in place through a gun. Polyurethane and isocyanate foams are applied as a two-component mixture that comes together at the tip of a gun, and forms an expanding foam. Cementitious foam is applied in a similar manner but does not expand. Spray foam insulation is sprayed onto concrete slabs, into wall cavities of an unfinished wall, against the interior side of sheathing, or through holes drilled in sheathing or drywall into the wall cavity of a finished wall.Advantages
- Blocks airflow by expanding & sealing off leaks, gaps and penetrations.
- Can serve as a semi-permeable vapor barrier with a better permeability rating than plastic sheeting vapor barriers and consequently reduce the buildup of moisture, which can cause mold growth.
- Can fill wall cavities in finished walls without tearing the walls apart.
- Works well in tight spaces.
- Provides acoustical insulation.
- Expands while curing, filling bypasses, and providing excellent resistance to air infiltration.
- Increases structural stability.
- Can be used in places where loose-fill cannot, such as between joists and rafters. When used between rafters, the spray foam can cover up the nails protruding from the underside of the sheathing, protecting your head.
- Can be applied in small quantities.
- Cementitious foam is fireproof.
Disadvantages
- The cost can be high compared to traditional insulation.
- Most foams, with the exception of cementitious foams, release toxic fumes when they burn.
- According to the US Environmental Protection Agency, there is insufficient data to accurately assess the potential for exposures to the toxic and environmentally harmful isocyanates which constitute 50% of the foam material.
- Depending on usage and building codes and environment, most foams require protection with a thermal barrier such as drywall on the interior of a house. For example, a 15-minute fire rating may be required.
- Can shrink slightly while curing if not applied on a substrate heated to manufacturer's recommended temperature.
- Although CFCs are no longer used, many use HCFCs or HFCs as blowing agents. Both are potent greenhouse gases, and HCFCs have some ozone depletion potential.
- Many foam insulations are made from petrochemicals and may be a concern for those seeking to reduce the use of fossil fuels and oil. However, some foams are becoming available that are made from renewable or recycled sources.
- R-value will diminish slightly with age, though the degradation of R-value stops once an equilibrium with the environment is reached. Even after this process, the stabilized R-value is very high.
- Most foams require protection from sunlight and solvents.
- It is difficult to retrofit some foams to an existing building structure because of the chemicals and processes involved.
- If one does not wear a protective mask or goggles, it is possible to temporarily impair one's vision..
- May require the HVAC system to have a source of fresh outside air, since the structure may not refresh inside air without it.
Advantages of closed-cell over open-cell foams
- Open-cell foam is porous, allowing water vapor and liquid water to penetrate the insulation. Closed-cell foam is non-porous, and not moisture-penetrable, thereby effectively forming a semi-permeable vapor barrier.
- Closed-cell foams are superior insulators. While open-cell foams typically have R-values of 3 to 4 per inch, closed-cell foams can attain R-values of 5 to 8 per inch. This is important if space is limited, because it allows a thinner layer of insulation to be used. For example, a 1-inch layer of closed-cell foam provides about the same insulation factor as 2 inches of open-cell foam.
- Closed-cell foam is very strong, and structurally reinforces the insulated surface. By contrast, open-cell foam is soft when cured, with little structural strength.
- Open-cell foam requires trimming after installation, and disposal of the waste material. Unlike open-cell foam, closed-cell foam rarely requires any trimming, with little or no waste.
Advantages of open-cell over closed-cell foams
- Open cell foams will allow timber to breathe.
- Open cell foams are incredibly effective as a sound barrier, having about twice the sound resistance in normal frequency ranges as closed-cell foam.
- Open cell foams provide a better economical yield.
- Open cell foams often have a low exothermic reaction temperature; will not harm coatings on electrical wiring, plumbing or other building components.
Types
- Icynene spray foam insulation will allow water to drain through it rather than storing it; closed cell foams will not allow water to enter at all.
- Icynene is 100% water-blown. This means its chemical expansion is caused by the carbon dioxide generated between the water and isocyanate material. Icynene will not emit any harmful gases once cured.
- Unlike other spray foam insulation material, Icynene will not off gas over time, Icynene contains no ozone-depleting substances and will maintain its efficiency with no loss of R-Value for the life of the install. This consistent R-Value and air barrier means energy savings are consistent throughout the life of the building and further insulation will not need to be added and Icynene won't need upgrading in the future. The longevity of Icynene continues to reduce the impact on the environment for the future.
- Flammability is relatively low.
- Icynene contains no CFCs. Chlorofluorocarbons were developed in the 1930s and are now the main cause of ozone depletion. CFCs can last for 100 years, 1 CFC molecule can result in the loss of 100,000 ozone molecules so its vitally important that we do not add to this.
- Icynene contains no HFC's or HCFC's, although HCFC's are better for the environment than CFC's they still damage the ozone layer. Icynene don't use these in any Icynene product.
- Icynene contains no VOC's, Volatile organic compounds Many VOCs are dangerous to human health or cause harm to the environment.
- Formaldehyde is a common building block for the synthesis of more complex compounds and materials, its extremely toxic to many animals regardless of which method it is absorbed. Icynene contains no formaldehyde traces.
- Icynene has a Global Warming Potential of 1.
;Sealection 500 spray foam:R-3.8 per inch. a water-blown low density spray polyurethane foam that uses water in a chemical reaction to create carbon dioxide and steam which expands the foam. Flame spread is 21 and smoke developed is 217 which makes it a Class I material. Disadvantages: Is an Isocyanate.
;Cementitious foam: One example is AirKrete, at R-3.9 per inch and no restriction on depth of application. Non-hazardous. Being fireproof, it will not smoke at all upon direct contact with flame, and is a two-hour firewall at a application, per ASTM E-814 testing. Great for sound deadening; does not echo like other foams. Environmentally friendly. Non-expansive. Fully sustainable: Consists of magnesium oxide cement and air, which is made from magnesium oxide extracted from seawater. Blown with air. Nontoxic, even during application. Does not shrink or settle. Zero VOC emission. Chemically inert. Insect resistant. Mold Proof. Insoluble in water. Disadvantages: Fragile at the low densities needed to achieve the quoted R value and, like all foams, it is more expensive than conventional fiber insulations. In 2010, the Ontario Building Code Commission ruled that AirKrete did not conform to requirements for a specific application in the building code. Their ruling states "As the proposed insulation is not impermeable, it could allow water or moisture to enter the wall assembly, which could then cause damage or deterioration of the building elements." As of 2014-08-21, the domain airkretecanada.com appears to be abandoned.
;Polyisocyanurate: Typically R-5.6 or slightly better after stabilization – higher values in stabilized boards. Less flammable than polyurethane.
;Phenolic injection foam: Such as Tripolymer R-5.1 per inch. Known for its air sealing abilities. Tripolymer can be installed in wall cavities that have fiberglass and cellulose in them. Non-hazardous. Not restricted by depth of application. Fire resistant – flame spread 5, smoke spread 0 – will not smoke at all upon direct contact with flame and is a two-hour firewall at a, or normal stud wall, application per ASTM E-199. Great for sound deadening, STC 53 ; does not echo like other foams. Environmentally friendly. Non-expansive. Fully sustainable: Consists of phenolic, a foaming agent, and air. Blown with air. Nontoxic, even during application. Does not shrink or settle. Zero VOC emission. Chemically inert. Insect resistant. Mold Proof. Insoluble in water. Disadvantages: Like all foams, it is more expensive than conventional fiber insulations when only comparing sq ft pricing. When you compare price to R value per sq ft the price is about the same.
;Closed-cell polyurethane: White or yellow. May use a variety of blowing agents. Resistant to water wicking and water vapor.
;Open-cell polyurethane: White or yellow. Expands to fill and seal cavity, but expands slowly, preventing damage to the wall. Resistant to water wicking, but permeable to water vapor. Fire resistant. Some types of polyurethane insulation are pour-able.
;Polystyrene and extruded polystyrene )
;: A Dow Chemical product that comes in cans and consists of several complex chemicals mixed together. Dow manufactures this for small applications, but there is nothing stopping someone from buying dozens of cans for a large retrofit task, such as sealing the sill plate. Since the blowing agent is a flammable gas, using large quantities in a short time requires strict attention to ventilation. Toxic vapors are minimal due to low vapor pressure and what little there is should be removed quickly if adequate ventilation is used. However, a respirator with an organic vapor sorbent may be advisable in some cases, for example if the foam is heated. Very thick applications should be done layer-by-layer to ensure proper curing in a reasonable time frame.
;Honeywell's Enovate Foam Blowing Agent: An HFC used in some closed-cell spray foam insulations. Although it has zero ozone depletion potential, it has a high global warming potential of 950. For example, E:zero spray foam solutions offers both open and closed cell varieties of spray foam insulation, some of which use Enovate high global warming potential blowing agents.
Insulating concrete forms
s are stay-in-place formwork made from insulating materials to build energy-efficient, cast-in-place, reinforced concrete walls.Rigid panels
Rigid panel insulation, also known as continuous insulation can be made from foam plastics such as polyisocyanurate or polystyrene, or from fibrous materials such as fiberglass, rock and slag wool. Rigid panel continuous insulation is often used to provide a thermal break in the building envelope, thus reducing thermal bridging.Structural insulated panels
s, also called stressed-skin walls, use the same concept as in foam-core external doors, but extend the concept to the entire house. They can be used for ceilings, floors, walls, and roofs. The panels usually consist of plywood, oriented strandboard, or drywall glued and sandwiched around a core consisting of expanded polystyrene, polyurethane, polyisocyanurate, compressed wheat straw, or epoxy. Epoxy is too expensive to use as an insulator on its own, but it has a high R-value, high strength, and good chemical and moisture resistance.SIPs come in various thicknesses. When building a house, they are glued together and secured with lumber. They provide the structural support, rather than the studs used in traditional framing.
Advantages
- Strong. Able to bear loads, including external loads from precipitation and wind.
- Faster construction than stick-built house. Less lumber required.
- Insulate acoustically.
- Impermeable to moisture.
- Can truck prefabricated panels to construction site and assemble on site.
- Create shell of solid insulation around house, while reducing bypasses common with stick-frame construction. The result is an inherently energy-efficient house.
- Do not use formaldehyde, CFCs, or HCFCs in manufacturing.
- True R-values and lower energy costs.
Disadvantages
- More expensive than other types of insulation.
- Thermal bridging at splines and lumber fastening points unless a thermally broken spline is used.
Fiberglass batts and blankets (glass wool)
Gaps between batts can become sites of air infiltration or condensation and requires strict attention during the installation. By the same token careful weatherization and installation of vapour barriers is required to ensure that the batts perform optimally. Air infiltration can be also reduced by adding a layer of cellulose loose-fill on top of the material.
Types
- Rock and slag wool. Usually made from rock or iron ore blast furnace slag. Some rock wool contains recycled glass. Nonflammable.
- Fiberglass. Made from molten glass, usually with 20% to 30% recycled industrial waste and post-consumer content. Nonflammable, except for the facing. Sometimes, the manufacturer modifies the facing so that it is fire-resistant. Some fiberglass is unfaced, some is paper-faced with a thin layer of asphalt, and some is foil-faced. Paper-faced batts are vapor retarders, not vapor barriers. Foil-faced batts are vapor barriers. The vapor barrier must be installed toward the warm side.
- High-density fiberglass
- Plastic fiber, usually made from recycled plastic. Does not cause irritation like fiberglass, but more difficult to cut than fiberglass. Not used in US. Flammable, but treated with fire-retardant.
Natural fiber
Examples include cork, cotton, recycled tissue/clothes, hemp, flax, coco, wool, lightweight wood fiber, cellulose, seaweed, etc. Similarly, many plant-based waste materials can be used as insulation such as nut shells, the cob of corns, most straws including lavender straw, recycled wine bottle corks, etc. They usually have significantly less thermal performance than industrial products; this can be compensated by increasing thickness of the insulation layer. They may or may not require fire retardants or anti-insect/pest treatments. Clay coating is a nontoxic additive which often meets these requirements.
Traditional clay-impregnated light straw insulation has been used for centuries in the northern climates of Europe. The clay coating gives the insulation a half hour fire rating according to DIN standards.
An additional source of insulation derived from hemp is hempcrete, which consists of hemp hurds mixed with a lime binder. It has little structural strength but can provide racking strength and insulation with comparable or superior R-values depending on the ratio of hemp to binder.
Sheep's wool insulation
Sheep's wool insulation is a very efficient thermal insulator with a similar performance to fiberglass, approximately R13-R16 for a 4-inch-thick layer. Sheep's wool has no reduction in performance even when condensation is present, but its fire retarding treatment can deteriorate through repeated moisture. It is made from the waste wool that the carpet and textile industries reject, and is available in both rolls and batts for both thermal and acoustic insulation of housing and commercial buildings. Wool is capable of absorbing as much as 40% of its own weight in condensation while remaining dry to the touch. As wool absorbs moisture it heats up and therefore reduces the risk of condensation. It has the unique ability to absorb VOC gases such as formaldehyde, nitrogen dioxide, sulphur dioxide and lock them up permanently. Sheep's wool insulation has a long lifetime due to the natural crimp in the fibre, endurance testing has shown it has a life expectancy of over 100 years.Wood fiber
Wood fiber insulation is available as loose fill, flexible batts and rigid panels for all thermal and sound insulation uses.It can be used as internal insulation : between studs, joists or ceiling rafters, under timber floors to reduce sound transmittance, against masonry walls
or externally : using a rain screen cladding or roofing, or directly plastered/rendered, over timber rafters or studs or masonry structures as external insulation to reduce thermal bridges.
There are two manufacturing processes:
- a wet process similar to pulp mills in which the fibers are softened and under heat and pressure the ligin in the fibres is used to create boards. The boards are limited to approximately 25 mm thickness; thicker boards are made by gluing. Additives such as latex or bitumen are added to increase water resistance.
- a dry process where a synthetic binder such as pet, polyolefin or polyurethane is added and the boards/batts pressed to different densities to make flexible batts or rigid boards.
Cotton batts
Advantages
- Equivalent R-Value to typical fiberglass batts
- Recycled content, no formaldehyde or other toxic substances, and very low toxicity during manufacture
- May help qualify for LEED or similar environmental building certification programs
- Fibers do not cause itchiness, no cancer risk from airborne fibers
Disadvantages
- Difficult to cut. Some installers may charge a slightly higher cost for installation as compared to other batts. This does not affect the effectiveness of the insulation, but may require choosing an installer more carefully, as any batt should be cut to fit the cavity well.
- Even with proper installation, batts do not completely seal the cavity against air movement.
- Still requires a vapor retarder or barrier
- May be hard to dry if a leak allows excessive moisture into the insulated cavity
Loose-fill (including cellulose)
General procedure for retrofits in walls:
- Drill holes in wall with hole saw, taking firestops, plumbing pipes, and other obstructions into account. It may be desirable to drill two holes in each wall cavity/joist section, one at the bottom and a second at the top for both verification and top-off.
- Pump loose fill into wall cavity, gradually pulling the hose up as the cavity fills.
- Cap the holes in the wall.
Advantages
- Cellulose insulation is environmentally preferable and safe. It has a high recycled content and less risk to the installer than fiberglass.
- R-Value 3.4 – 3.8 per inch
- Loose fill insulation fills the wall cavity better than batts. Wet-spray applications typically seal even better than dry-spray.
- Class I fire safety rating
- No formaldehyde-based binders
- Not made from petrochemicals nor chemicals with a high toxicity
Disadvantages
- Weight may cause ceilings to sag if the material is very heavy. Professional installers know how to avoid this, and typical sheet rock is fine when dense-packed.
- Will settle over time, losing some of its effectiveness. Unscrupulous contractors may "fluff" insulation using fewer bags than optimal for a desired R-value. Dry-spray cellulose can settle 20% of its original volume. However, the expected settling is included in the stated R-Value. The dense-pack dry installation reduces settling and increases R-value.
- R-values stated on packaging are based on laboratory conditions; air infiltration can significantly reduce effectiveness, particularly for fiberglass loose fill. Cellulose inhibits convection more effectively. In general, loose fill is seen as being better at reducing the presence of gaps in insulation than batts, as the cavity is sealed more carefully. Air infiltration through the insulating material itself is not studied well, but would be lower for wet-spray insulations such as wet-spray cellulose.
- May absorb moisture.
Types
- Rock and slag wool, also known as mineral wool or mineral fiber. Made from rock, iron ore blast furnace slag, or recycled glass. Nonflammable. More resistant to airflow than fiberglass. Clumps and loses effectiveness when moist or wet, but does not absorb much moisture, and regains effectiveness once dried. Older mineral wool can contain asbestos, but normally this is in trace amounts.
- Cellulose insulation. Cellulose, is denser and more resistant to air flow than fiberglass. Persistent moisture will weaken aluminium sulphate flame-retardants in cellulose. However, borate fire retardants have been in use for more than 30 years and are not affected by moisture in any way. Dense-pack cellulose is highly resistant to air infiltration and is either installed into an open wall cavity using nets or temporary frames, or is retrofitted into finished walls. However, dense-pack cellulose blocks, but does not permanently seal, bypasses, in the way a closed-cell spray foam would. Furthermore, as with batts and blankets, warm, moist air will still pass through, unless there is a continuous near-perfect vapor barrier.
- Wet-spray cellulose insulation is similar to loose-fill insulation, but is applied with a small quantity of water to help the cellulose bind to the inside of open wall cavities, and to make the cellulose more resistant to settling. Spray application provides even better protection against air infiltration and improves wall rigidity. It also allows application on sloped walls, attics, and similar spaces. Wet-spray is best for new construction, as the wall must be allowed to dry completely before sealing with drywall. Moist-spray cellulose uses less water to speed up drying time.
- Fiberglass. Usually pink, yellow, or white. Loses effectiveness when moist or wet, but does not absorb much water. Nonflammable. See Health effects of fiberglass.
- Natural insulations such as granulated cork, hemp fibres, grains, all which can be treated with a low toxicity fire and insect retardants
- Vermiculite. Generally gray or brown.
- Perlite. Generally white or yellow.
- Cotton, wool, hemp, corn cobs, strawdust and other harvested natural materials. Not common.
- Granulated cork. Cork is as good an insulator as foam. It does not absorb water as it consists of closed cells. Resists fire. Used in Europe.
- Most plant based insulations such as wood chips, wood fiber, sawdust, redwood bark, hemlock fiber, balsa wood, hemp fiber, flax fiber, etc. are hygroscopic. Wood absorbs water, which reduces its effectiveness as a thermal insulator. In the presence of moisture, wood is susceptible to mold, mildew, and rot. Careful design of wall, roof and floor systems as done in Europe avoid these problems which are due to poor design.
Regulations
- 16 CFR Part 1209 – covers settled density, corrosiveness, critical radiant flux, and smoldering combustion.
- ASTM Standard C-739 – loose-fill cellulose insulation – covers all factors of the CPSC regulation and five additional characteristics, R-value, starch content, moisture absorption, odor, and resistance to fungus growth.
- ASTM Standard C-1149 – Industry standard for self-supported spray-applied cellulose insulation for exposed or wall cavity application – covers density, R-value, surface burning, adhesive strength, smoldering combustion, fungi resistance, corrosion, moisture vapor absorption, odor, flame resistance permanency, substrate deflection, and air erosion.
- 16 CFR Part 460 – commonly known as the "R-Value Rule," intended to eliminate misleading insulation marketing claims and ensure publication of accurate R-Value and coverage data.
Aerogels
Straw bales
The use of highly compressed straw bales as insulation, though uncommon, is gaining popularity in experimental building projects for the high R-value and low cost of a thick wall made of straw. "Research by Joe McCabe at the Univ. of Arizona found R-value for both wheat and rice bales was about R-2.4 per inch with the grain, and R-3 per inch across the grain. A 23" wide 3 string bale laid flat = R-54.7, laid on edge = R-42.8. For 2 string bales laid flat = R-42.8, and on edge = R-32.1 ". Using a straw bale in-fill sandwich roof greatly increases the R value. This compares very favorably with the R-19 of a conventional 2 x 6 insulated wall. When using straw bales for construction, the bales must be tightly-packed and allowed to dry out sufficiently. Any air gaps or moisture can drastically reduce the insulating effectiveness.Reflective insulation and radiant barriers
Reflective insulation and radiant barriers reduce the radiation of heat to or from the surface of a material. Radiant barriers will reflect radiant energy. A radiant barrier by itself will not affect heat conducted through the material by direct contact or heat transferred by moist air rising or convection. For this reason, trying to associate R-values with radiant barriers is difficult and inappropriate. The R-value test measures heat transfer through the material, not to or from its surface. There is no standard test designed to measure the reflection of radiated heat energy alone. Radiated heat is a significant means of heat transfer; the sun's heat arrives by radiating through space and not by conduction or convection. At night the absence of heat is the exact same phenomenon, with the heat radiating described mathematically as the linear opposite. Radiant barriers prevent radiant heat transfer equally in both directions. However, heat flow to and from surfaces also occurs via convection, which in some geometries is different in different directions.Reflective aluminum foil is the most common material used as a radiant barrier. It has no significant mass to absorb and retain heat. It also has very low emittance values "E-values" which significantly reduces heat transfer by radiation.
Types of radiant barriers
- Foil or "reflective foil laminate"s.
- Foil-faced polyurethane or foil-faced polyisocyanurate panels.
- Foil-faced polystyrene. This laminated, high density EPS is more flexible than rigid panels, works as a vapor barrier, and works as a thermal break. Uses include the underside of roof sheathing, ceilings, and on walls. For best results, this should not be used as a cavity fill type insulation.
- Foil-backed bubble pack. This is thin, more flexible than rigid panels, works as a vapor barrier, and resembles plastic bubble wrap with aluminum foil on both sides. Often used on cold pipes, cold ducts, and the underside of roof sheathing.
- Light-colored roof shingles and reflective paint. Often called cool roofs, these help to keep attics cooler in the summer and in hot climates. To maximize radiative cooling at night, they are often chosen to have high thermal emissivity, whereas their low emissivity for the solar spectrum reflects heat during the day.
- Metal roofs; e.g., aluminum or copper.
Materials with one shiny side must be positioned with the shiny side facing an air space to be effective. An aluminum foil radiant barrier can be placed either way – the shiny side is created by the rolling mill during the manufacturing process and does not affect the reflective of the foil material. As radiant barriers work by reflecting infra-red energy, the aluminum foil would work just the same if both sides were dull.
Reflective Insulation
Insulation is a barrier material to resist/reduce substance /energy to transfer from one side to another.Heat/ Thermal Insulation is a barrier material to resist / block / reflect the heat energy to transfer from one side to another.
Reflective Insulation is one of the Heat/Thermal Insulation to reflect Radiation Heat transfer from one side to another due to the reflective surface.
There are a lot of definitions about “Thermal/Heat Insulation” and the common misinterpretation of “Thermal/Heat Insulation” = “Bulk/Mass/Batt Insulation” which is actually uses to resist Conduction Heat Transfer with certain "R-Value".
As such Materials reflecting Radiant Heat with negligible “R-Value” should also be classified as “Thermal/ Heat Insulation”.
Thus
Reflective Insulation = Radiant Barrier
Advantages
- Very effective in warmer climates
- No change in thermal performance over time due to compaction, disintegration or moisture absorption
- Thin sheets takes up less room than bulk insulation
- Can act as a vapor barriers
- Non-toxic/non-carcinogenic
- Will not mold or mildew
- Radon retarder, will limit radon penetration through the floor
Disadvantages
- Must be combined with other types of insulation in very cold climates
- May result in an electrical safety hazard where the foil comes into contact with faulty electrical wiring
Hazardous and discontinued insulation
Urea-formaldehyde foam (UFFI) and panels
insulation releases poisonous formaldehyde gas, causing indoor air quality problems. The chemical bond between the urea and formaldehyde is weak, resulting in degradation of the foam cells and emission of toxic formaldehyde gas into the home over time. Furthermore, some manufacturers used excess formaldehyde to ensure chemical bonding of all of the urea. Any leftover formaldehyde would escape after the mixing. Most states outlawed it in the early 1980s after dangers to building occupants were discovered. However emissions are highest when the urea-formaldehyde is new and decrease over time, so houses that have had urea-formaldehyde within their walls for years or decades do not require remediation.UFFI provides little mechanical strength, as the material is weak and brittle. Before its risks were recognized, it was used because it was a cheap, effective insulator with a high R-value and its open-cell structure was a good acoustic insulator. Though it absorbed moisture easily, it regained effectiveness as an insulator when dried.
Asbestos
once found common use as an insulation material in homes and buildings because it is fireproof, a good thermal and electrical insulator, and resistant to chemical attack and wear. It has been found that asbestos can cause cancer when in friable form.When found in the home, asbestos often resembles grayish-white corrugated cardboard coated with cloth or canvas, usually held in place around pipes and ducts with metal straps. Things that typically might contain asbestos:
- Boiler and furnace insulation.
- Heating duct wrapping.
- Pipe insulation.
- Ducting and transite pipes within slabs.
- Acoustic ceilings.
- Textured materials.
- Resilient flooring.
- Blown-in insulation.
- Roofing materials and felts.
Health and safety issues
Spray polyurethane foam (SPF)
All polyurethane foams are composed of petrochemicals. Foam insulation often uses hazardous chemicals with high human toxicity, such as isocyanates, benzene and toluene. The foaming agents no longer use ozone-depleting substances. Personal Protective Equipment is required for all people in the area being sprayed to eliminate exposure to isocyanates which constitute about 50% of the foam raw material.Fiberglass
Fiberglass is the most common residential insulating material, and is usually applied as batts of insulation, pressed between studs. Health and safety issues include potential cancer risk from exposure to glass fibers, formaldehyde off-gassing from the backing/resin, use of petrochemicals in the resin, and the environmental health aspects of the production process. Green building practices shun Fiberglass insulation.The World Health Organization has declared fiber glass insulation as potentially carcinogenic. In October 2001, an international expert review by the International Agency for Research on Cancer re-evaluated the 1988 IARC assessment of glass fibers and removed glass wools from its list of possible carcinogens by downgrading the classification of these fibers from Group 2B to Group 3. All fiber glass wools that are commonly used for thermal and acoustical insulation are included in this classification. IARC noted specifically: "Epidemiologic studies published during the 15 years since the previous IARC Monographs review of these fibers in 1988 provide no evidence of increased risks of lung cancer or mesothelioma from occupational exposures during manufacture of these materials, and inadequate evidence overall of any cancer risk."
The IARC downgrade is consistent with the conclusion reached by the US National Academy of Sciences, which in 2000 found "no significant association between fiber exposure and lung cancer or nonmalignant respiratory disease in the MVF manufacturing environment." However, manufacturers continue to provide cancer risk warning labels on their products, apparently as indeminfication against claims.
However, the literature should be considered carefully before determining that the risks should be disregarded. The page provides a summary of the risks, as does the .
Miraflex is a new type of fiberglass batt that has curly fibers that are less itchy and create less dust. You can also look for fiberglass products factory-wrapped in plastic or fabric.
Fiberglass is energy intensive in manufacture. Fiberglass fibers are bound into batts using adhesive binders, which can contain phenol formaldehyde, a hazardous chemical known to slowly off-gas from the insulation over many years. The industry is mitigating this issue by switching to binder materials not containing phenol formaldehyde; some manufacturers offer agriculturally based binder resins made from soybean oil. Formaldehyde-free batts and batts made with varying amounts of recycled glass are available.
Loose-fill cellulose
Cellulose is 100% natural and 75–85% of it is made from recycled newsprint. Health issues appear to be minor, and most concerns around the flame retardants and mold potential seem to be misrepresentations.- Cellulose is classified by OSHA as a dust nuisance during installation, and the use of a dust mask is recommended.
- Cellulose is treated with a flame retardant and insect repellent, usually boric acid and sometimes borax to resist insects and rodents. To humans, boric acid has a toxicity comparable to table salt.
- Mold has been seen as a potential concern. However, according to the Cellulose Manufacturer's Association, "One thing that has not contributed to mold problems is the growing popularity of cellulose insulation among knowledgeable home owners who are interested in sustainable building practices and energy conservation. Mycology experts are often quoted as saying: “Mold grows on cellulose.” They are referring to cellulose the generic material that forms the cell walls of all plants, not to cellulose insulation. Unfortunately, all too often this statement is taken to mean that cellulose insulation is exceptionally susceptible to mold contamination. In fact, due to its favorable moisture control characteristics and other factors associated with the manufacturing process relatively few cases of significant mold growth on cellulose insulation have been reported. All the widely publicized incidents of serious mold contamination of insulation have involved fiber insulation materials other than cellulose.".
- Moisture is always a concern for homes, and the wet-spray application of cellulose may not be a good choice in particularly wet climates unless the insulation can be verified to be dry before drywall is added. In very wet climates the use of a moisture meter will ensure proper installation and eliminate any installation mold issues. The dry-spray application is another option for very wet climates, allowing for a faster installation.
US Health and Safety Partnership Program