Yamamoto was born in Tokyo on November 21, 1950. In 1973 he received his B.S. degree from Tokyo Institute of Technology. He continued his studies at the University of Tokyo where he received his M.S. in 1975 and Ph.D. in 1978. From 1978 to 1992, he worked at NTT Basic Research Laboratories in Tokyo. Since 1992, he has been a professor of applied physics and electrical engineering at Stanford University in the United States and currently a professor. Since 2003, he also has been a professor at National Institute of Informatics in Tokyo and currently a professor. In 2019, he became a founding director of NTT PHI Labs in Silicon Valley, California, the United States.
Work
Yamamoto's scientific focuses in the 1980s were coherent optical fiber communications, photon number squeezing in semiconductor lasers, quantum non-demolition measurements and other experimental quantum optics subjects. Some of Yamamoto's key works from this era are proposals for how to physically realize photon-number squeezing, QND measurement, and a quantum computer using photons. His most prominent work in the 1990s is in semiconductor cavity quantum electrodynamics and quantum transport effects in mesoscopic devices. During the 2000s, his most important work was on the development of optically-active quantum dots as a platform for quantum information processing His another important work was on exciton-polariton condensation effects. Yamamoto was also active in the development of security theory and realization of quantum key distribution protocols. Landmark papers from this era include the demonstration of indistinguishable photons from a single quantum dot; the proposal for biexciton cascade as a method for generating entangled photons from a single quantum dot , and control of a single spin qubit in a quantum dot using optical pulses. During the 2010s, his work has continued on exploring quantum dots as a platform for building both quantum repeaters and quantum computers. One highlight was the co-first demonstration of entanglement between a spin in a quantum dot and a photon emitted by it. Work on exciton-polaritons continued. Since 2012, Yamamoto has studied the required number of physical qubits and expected computational time in quantum computer and pioneered the development of a novel quantum optical computer, called coherent Ising machine inspired by developments in digital coherent optical communications and degenerate optical parametric oscillators.