Vehicular automation


Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent system to assist a vehicle's operator. These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, may be referred to as semi-autonomous. A vehicle relying solely on automation is consequently referred to as robotic or autonomous. After the invention of the integrated circuit, the sophistication of automation technology increased. Manufacturers and researchers subsequently added a variety of automated functions to automobiles and other vehicles.

Overview

An automated driving system is generally an integrated package of individual automated systems operating in concert. Automated driving implies that the driver have given up the ability to drive to the vehicle automation system. Even though the driver may be alert and ready to take action at any moment, automation system controls all functions.
Automated driving systems are often conditional, which implies that the automation system is capable of automated driving, but not for all conditions encountered in the course of normal operation. Therefore, a human driver is functionally required to initiate the automated driving system, and may or may not do so when driving conditions are within the capability of the system. When the vehicle automation system has assumed all driving functions, the human is no longer driving the vehicle but continues to assume responsibility for the vehicle's performance as the vehicle operator. The automated vehicle operator is not functionally required to actively monitor the vehicle's performance while the automation system is engaged, but the operator must be available to resume driving within several seconds of being prompted to do so, as the system has limited conditions of automation. While the automated driving system is engaged, certain conditions may prevent real-time human input, but for no more than a few seconds. The operator is able to resume driving at any time subject to this short delay. When the operator has resumed all driving functions, he or she reassumes the status of the vehicle's driver.

Autonomy levels

Autonomy in vehicles is often categorized in six levels: The level system was developed by the Society of Automotive Engineers.
conducted a test of two automatic emergency braking systems: those designed to prevent crashes and others that aim to make a crash less severe. The test looked at popular models like the 2016 Volvo XC90, Subaru Legacy, Lincoln MKX, Honda Civic and Volkswagen Passat. Researchers tested how well each system stopped when approaching both a moving and nonmoving target. It found that systems capable of preventing crashes reduced vehicle speeds by twice that of the systems designed to merely mitigate crash severity. When the two test vehicles traveled within 30 mph of each other, even those designed to simply lessen crash severity avoided crashes 60 percent of the time.
The success in the automated driving system has been known to be successful in situations like rural road settings. Rural road settings would be a setting in which there is lower amounts of traffic and lower differentiation between driving abilities and types of drivers. "The greatest challenge in the development of automated functions is still inner-city traffic, where an extremely wide range of road users must be considered from all directions." This technology is progressing to a more reliable way of the automated driving cars to switch from auto-mode to driver mode. Auto-mode is the mode that is set in order for the automated actions to take over, while the driver mode is the mode set in order to have the operator controlling all functions of the car and taking the responsibilities of operating the vehicle.
This definition would include vehicle automation systems that may be available in the near term—such as traffic-jam assist, or full-range automated cruise control—if such systems would be designed such that the human operator can reasonably divert attention away from the performance of the vehicle while the automation system is engaged. This definition would also include automated platooning.

The SARTRE Project

The project's main goal is to create platooning, a train of automated cars, that will provide comfort and have the ability for the driver of the vehicle to arrive safely to a destination. Along with the ability to be along the train, drivers that are driving past these platoons, can join in with a simple activation of the automated driving system that correlates with a truck that leads the platoon. The project is taking what we know as a train system and mixing it with automated driving technology. This is intended to allow for an easier transportation through cities and ultimately help with traffic flow through heavy automobile traffic.
In some parts of the world the self-driving car has been tested in real life situations such as in Pittsburgh. has been put to the test around the city, driving with different types of drivers as well as different traffic situations. Not only have there been testing and successful parts to the automated car, but there has also been extensive testing in California on automated busses. The lateral control of the automated buses uses magnetic markers such as the platoon at San Diego, while the longitudinal control of the automated truck platoon uses millimeter wave radio and radar. Current examples around today's society include the Google car and Tesla's models. Tesla has redesigned automated driving, they have created car models that allow drivers to put in the destination and let the car take over. These are two modern day examples of the automated driving system cars.

Risks and liabilities

Many automakers such as Ford and Volvo have announced plans to offer fully automated cars in the future. Extensive research and development is being put into automated driving systems, but the biggest problem automakers cannot control is how drivers will use system. Drivers are stressed to stay attentive and safety warnings are implemented to alert the driver when corrective action is needed. Tesla Motor's has one recorded incident that resulted in a fatality involving the automated driving system in the Tesla Model S. The accident report reveals the accident was a result of the driver being inattentive and the autopilot system not recognizing the obstruction ahead.
Another flaw with automated driving systems is that in situations where unpredictable events such as weather or the driving behavior of others may cause fatal accidents due to sensors that monitor the surroundings of the vehicle not being able to provide corrective action.
To overcome some of the challenges for automated driving systems, novel methodologies based on virtual testing, traffic flow simulatio and digital prototypes have been proposed,, especially when novel algorithms based on Artificial Intelligence approaches are employed which require extensive training and validation data sets.
The implementation of automated driving systems poses the possibility of changing build environments in urban areas, such as the expansion of suburban areas due to the increased ease of mobility.

Ground vehicles

Ground vehicles employing automation and teleoperation include shipyard gantries, mining trucks, bomb-disposal robots, robotic insects, and driverless tractors.
There are a lot of autonomous and semi-autonomous ground vehicles being made for the purpose of transporting passengers. One such example is the free-ranging on grid technology which consists of autonomous vehicles, a magnetic track and a supervisory system. The FROG system is deployed for industrial purposes in factory sites and has been in use since 1999 on the ParkShuttle, a PRT-style public transport system in the city of Capelle aan den IJssel to connect the Rivium business park with the neighboring city of Rotterdam. The system experienced a crash in 2005 that proved to be caused by a human error.
Applications for automation in ground vehicles include the following:
Research is ongoing and prototypes of autonomous ground vehicles exist.

Cars

Extensive automation for cars focuses on either introducing robotic cars or modifying modern car designs to be semi-autonomous.
Semi-autonomous designs could be implemented sooner as they rely less on technology that is still at the forefront of research. An example is the dual mode monorail. Groups such as RUF and TriTrack are working on projects consisting of specialized private cars that are driven manually on normal roads but also that dock onto a monorail/guideway along which they are driven autonomously.
As a method of automating cars without extensively modifying the cars as much as a robotic car, Automated highway systems aims to construct lanes on highways that would be equipped with, for example, magnets to guide the vehicles. Automation vehicles have auto-brakes named as Auto Vehicles Braking System. Highway computers would manage the traffic and direct the cars to avoid crashes.
The European Commission has established a smart car development program called the Intelligent Car Flagship Initiative. The goals of that program include:
There are plenty of further uses for automation in relation to cars. These include:
Singapore also announced a set of provisional national standards on January 31, 2019, to guide the autonomous vehicle industry. The standards, known as Technical Reference 68, will promote the safe deployment of fully driverless vehicles in Singapore, according to a joint press release by Enterprise Singapore, Land Transport Authority, Standards Development Organisation and Singapore Standards Council.

Shared autonomous vehicles

Following recent developments in autonomous cars, shared autonomous vehicles are now able to run in ordinary traffic without the need for embedded guidance markers. So far the focus has been on low speed,, with short, fixed routes for the "last mile" of journeys. This means issues of collision avoidance and safety are significantly less challenging than those for automated cars, which seek to match the performance of conventional vehicles. Aside from 2getthere, three companies - Ligier, and RDM Group - are manufacturing and actively testing such vehicles. Two other companies have produced prototypes, Local Motors and the .
Beside these efforts, Apple is reportedly developing an autonomous shuttle, based on a vehicle from an existing automaker, to transfer employees between its offices in Palo Alto and Infinite Loop, Cupertino. The project called "PAIL", after its destinations, was revealed in August 2017 when Apple announced it had abandoned development of autonomous cars.

Trials

A large number of trials have been conducted since 2016, with most involving only one vehicle on a short route for a short period of time and with an on board conductor. The purpose of the trials has been to both provide technical data and to familiarize the public with the driver less technology. In July 2018, the Chinese search engine Baidu unveiled its autonomous bus "Apolong", manufactured by Kinglong and developed by a consortium of 40 multinational companies including BMW, Baidu and Intel. It is expected to be the first mass-produced autonomous bus.
Company/LocationDetails
EasyMileEasyMile has long term trials at Wageningen University and Lausanne as well as short trials in Darwin, Dubai, Helsinki, San Sebastian, Sophia Antipolis, Bordeaux, Tapei and a tour of five US cities. In December 2017 a trial began in Denver running at on a dedicated stretch of road. EasyMile was operating in 10 U.S. states, including California, Florida, Texas, Ohio, Utah, and Virginia before U.S. service was suspended after a February 2020 injury.
NavyaNavya claimed in May 2017 to have carried almost 150,000 passengers across Europe with trials in Sion, Cologne, Lyon, Doha, Bordeaux and the nuclear power plant at Civaux as well as Las Vegas and Perth. Other trials are scheduled for University of Michigan in the fall of 2017 and La Trobe University.
Next-FutureThe ten passenger,, autonomous pods which are capable of joining to form a bus, were demonstrated at the World Government Summit in Dubai in February 2018. The demonstration was a collaboration with between Next-Future and Dubai's Roads and Transport Authority and the vehicles are under consideration for deployment there.
OlliThe Olli was tested in Washington D.C. at the end of 2016 and was due to be trialed in Las Vegas and Miami.
RDM GroupIn October 2017 RDM Group began a trial service with four seat vehicles between Trumpington Park and Ride and Cambridge railway station along the guided busway, for possible use as an after hours service once the regular bus service has stopped each day.
GATEway ProjectPlanned trial for the GATEway Project in Greenwich in south London
ParkshuttleTrials are underway prior to a planned 2020 deployment in Dubai. A successful climate test was completed in November 2017. Trials are also planned for 2getthere's third generation Parkshuttle in Singapore.
Texas A&MIn August 2017 a driverless four seat shuttle was trialed at Texas A&M university as part of its "Transportation Technology Initiative" in a project run by academics and students on the campus. They hope to have 15 shuttles working on the campus in 2017.
Apollo - Baidu / KinglongIn July 2018, a driverless eight seater shuttle bus was trialed at the 2018 Shanghai expo after tests in Xiamen and Chongqing cities as part of Project Apollo, a mass-produced autonomous vehicle project launched by Baidu. The consortium that developed Apolong autonomous bus included open source technology developed by 10,000 developers and a consortium of 40 multinational companies including Mercedes Benz, XTE, Baidu, Intel, Softbank, Kinglong and BMW.
TransurbanOn 20 March 2018 the Government of New South Wales and Transurban announced they will begin testing driverless technology on the M2 Hills Motorway in Sydney NSW Australia. Considered a "mapping trial" because the cars will be driven by a human at all times.

Planned utilisation

In January 2017 it was announced the ParkShuttle system in the Netherlands will be renewed and expanded including extending the route network beyond the exclusive right of way so vehicles will run in mixed traffic on ordinary roads. The upgrade will occur after 2018 when the current operating concession expires.
Parkshuttle plans deployment of 25 vehicles in 2020 that will perform fully autonomous shuttle services to and from Bluewaters Island in Dubai. A successful climate test was completed in November 2017.
In December 2016 the Jacksonville Transportation Authority has announced its intention to replace, within five years, the Jacksonville Skyway monorail with driverless vehicles that would run on the existing elevated superstructure as well as continue onto ordinary roads. The plan is to keep the current system running while preparing for the new technology.

Motorcycles

Several self-balancing autonomous motorcycles were demonstrated in 2017 and 2018 from BMW, Honda and Yamaha.

Buses

Autonomous buses are a reality as well as self driving cars and trucks. They are started to be used in Stockholm. China has also a small fleet of self-driving public buses in the tech district of Shenzhen, Guangdong.
The first autonomous bus trial in the United Kingdom commenced in mid-2019, with an Alexander Dennis Enviro200 MMC single-decker bus modified with autonomous software from Fusion Processing able to operate in driverless mode within Stagecoach Manchester's Sharston bus depot, performing tasks such as driving to the washing station, refuelling point and then parking up at a dedicated parking space in the depot. The first passenger-carrying driverless bus trial in the United Kingdom is expected to commence by 2021, with a fleet of five identical vehicles to the Manchester trial used on a Stagecoach Fife park-and-ride route across the Forth Road Bridge, from the north bank of the Forth to Edinburgh Park station.

Trucks

The concept for autonomous vehicles has been applied for commercial uses, such as autonomous or nearly autonomous trucks.
Companies such as Suncor Energy, a Canadian energy company, and Rio Tinto Group were among the first to replace human-operated trucks with driverless commercial trucks run by computers. In April 2016, trucks from major manufacturers including Volvo and the Daimler Company completed a week of autonomous driving across Europe, organized by the Dutch, in an effort to get self-driving trucks on the road. With developments in self-driving trucks progressing, U.S. self-driving truck sales is expected to reach 60,000 by 2035 according to a report released by IHS Inc. in June 2016.
As reported in June 1995 in Popular Science Magazine, self-driving trucks were being developed for combat convoys, whereby only the lead truck would be driven by a human and the following trucks would rely on satellite, an inertial guidance system and ground-speed sensors. Caterpillar Inc. made early developments in 2013 with the Robotics Institute at Carnegie Mellon University to improve efficiency and reduce cost at various mining and construction sites.
In Europe, the Safe Road Trains for the Environment is such an approach.
From PWC's Strategy& Report, self driving trucks will be the source of a lot of concern around how this technology will impact around 3 million truck drivers in the US, as well as 4 million employees in support of the trucking economy in gas stations, restaurants, bars and hotels. At the same time, some companies like Starsky, are aiming for Level 3 Autonomy, which would see the driver playing a control role around the truck's environment. The company's project, remote truck driving, would give truck drivers a greater work-life balance, enabling them to avoid long periods away from their home. This would however provoke a potential mismatch between the driver's skills with the technological redefinition of the job.
Companies that buy driverless trucks could massively cut down on costs: human drivers will no longer be required, companies' liabilities due to truck accidents will diminish, and productivity will increase. The usage of self driving trucks will go hand in hand with the use of real-time data to optimize both efficiency and productivity of the service delivered, as a way to tackle traffic congestion for example. Driverless trucks could enable new business models that would see deliveries shift from day time to night time or time slots in which traffic is less heavily dense.

Waymo Semi

In March 2018, Waymo, the automated vehicle company spun off from Google parent company Alphabet Inc., announced it was applying its technology to semi trucks. In the announcement, Waymo noted it would be using automated trucks to move freight related to Google's data centers in the Atlanta, GA area. The trucks will be manned and operated on public roads.

Uber Semi

In October 2016, Uber completed the first driverless operation of an automated truck on public roads, delivering a trailer of Budweiser beer from Fort Collins, CO to Colorado Springs. The run was completed at night on Interstate 25 after extensive testing and system improvements in cooperation with the Colorado State Police. The truck had a human in the cab but not sitting in the driver's seat, while the Colorado State Police provided a rolling closure of the highway. At the time, Uber's automated truck was based primarily on technology developed by Otto, which Uber acquired in August 2016. In March 2018, Uber announced it was using its automated trucks to deliver freight in Arizona, while also leveraging the UberFreight app to find and dispatch loads.

Embark Semi

In February 2018, Embark Trucks announced it had completed the first cross-country trip of an automated semi, driving 2,400 miles from Los Angeles, CA to Jacksonville, FL on Interstate 10. This followed a November 2017 announcement that it had partnered with Electrolux and Ryder to test its automated truck by moving Frigidaire refrigerators from El Paso, TX to Palm Springs, CA.

Tesla Semi

In November 2017 Tesla, Inc., owned by Elon Musk, revealed a prototype of the Tesla Semi and announced that it would go into production. This long-haul, electric semi-truck can drive itself and move in "platoons" that automatically follow a lead vehicle. It was disclosed in August 2017 that it sought permission to test the vehicles in Nevada.

Starsky Robotics

In 2017, Starsky Robotics unveiled its technology that allows to make trucks autonomous. Unlike its bigger competitors in this industry that aims to tackle Level 4 and 5 Autonomy, Starsky Robotics is aiming at producing Level 3 Autonomy trucks, in which the human drivers should be prepared to respond to a "request to intervene" in case anything goes wrong.

Pronto AI

In December 2018, Anthony Levandowski unveiled his new autonomous driving company, Pronto, which is building L2 ADAS technology for the commercial trucking industry. The company is based in San Francisco.

Drones

Also see Delivery Drone.
A few experiments have been undergone to develop delivery drones for various industries, including packages and food. Innovation is driving this very young market and sees traditional transportation companies compete with start-ups, governments and technological companies like Amazon, for whom delivery is central to its growth strategy.
However, even if technology seems to allow for those solutions to function correctly as various tests of various companies show, the main throwback to the market launch and use of such drones is inevitably the legislation in place and regulatory agencies have to decide on the framework they wish to take to draft regulation. This process is in different phases across the world as each country will tackle the topic independently. For example, Iceland's government and departments of transport, aviation, police have already started issuing licenses for drone operations. It has a permissive approach and together with Costa Rica, Italy, the UAE, Sweden and Norway, has a fairly unrestricted legislation on commercial drone use. Those countries are characterized by a body of regulation that may give operational guidelines or require licensing, registration and insurance.
On the other side, other countries have decided to ban, either directly or indirectly, the use of commercial drones. The RAND Corporation thus makes the difference between countries forbidding drones and those that have a formal process for commercial drone licensing, but requirements are either impossible to meet or licenses do not appear to have been approved.
However, most countries seem to be struggling on the integration of drones for commercial uses into their aviation regulatory frameworks. Thus, constraints are placed on the use of those drones such as that they must be operating within the visual line of sight of the pilot and thus limiting their potential range. This would be the case of the Netherlands and Belgium. Most countries do let pilot operate outside the VLOS but is subject to restrictions and pilot ratings, which would be the case of the US.
The general trend is that legislation is moving fast and laws are constantly being reevaluated. Countries are moving towards a more permissive approach but the industry still lacks infrastructures to ensure the success of such a transition. To provide safety and efficiency, specialized training courses, pilot exams as well as liability management measures regarding insurances have to be developed.
There is a sense of urgency that breathes from this innovation as competition is high and companies lobby to integrate them rapidly in their products and services offerings. Since June 2017, the US Senate legislation reauthorized the Federal Aviation Administration and the Department of Transportation to create a carrier certificate allowing for package deliveries by drones.

Trains

The concept for autonomous vehicles has also been applied for commercial uses, like for autonomous trains. First self-driving train in UK was launched in London Thameslink route.
An example of an automated train network is the Docklands Light Railway in London.

Automated guided vehicle

An automated guided vehicle or automatic guided vehicle is a mobile robot that follows markers or wires in the floor, or uses vision, magnets, or lasers for navigation. They are most often used in industrial applications to move materials around a manufacturing facility or warehouse. Application of the automatic guided vehicle has broadened during the late 20th century.

Aircraft

Aircraft has received much attention for automation, especially for navigation. A system capable of autonomously navigating a vehicle is known as autopilot.

Watercraft

Autonomous boats can provide security, do research, or perform hazardous or repetitive tasks.

Submersibles

Underwater vehicles have been a focus for automation for tasks such as pipeline inspection and underwater mapping.