Valuation ring


In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x −1 belongs to D.
Given a field F, if D is a subring of F such that either x or x −1 belongs to
D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.
The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where
Every local ring in a field K is dominated by some valuation ring of K.
An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.

Definitions

There are several equivalent definitions of valuation ring. For an integral domain D and its field of fractions K, the following are equivalent:
  1. For every nonzero x in K, either x in D or x−1 in D.
  2. The ideals of D are totally ordered by inclusion.
  3. The principal ideals of D are totally ordered by inclusion
  4. There is a totally ordered abelian group Γ and a surjective group homomorphism ν : K× → Γ with D = ∪.
The equivalence of the first three definitions follows easily. A theorem of states that any ring satisfying the first three conditions satisfies the fourth: take Γ to be the quotient K×/D× of the unit group of K by the unit group of D, and take ν to be the natural projection. We can turn Γ into a totally ordered group by declaring the residue classes of elements of D as "positive".
Even further, given any totally ordered abelian group Γ, there is a valuation ring D with value group Γ.
From the fact that the ideals of a valuation ring are totally ordered, one can conclude that a valuation ring is a local domain, and that every finitely generated ideal of a valuation ring is principal. In fact, it is a theorem of Krull that an integral domain is a valuation ring if and only if it is a local Bézout domain. It also follows from this that a valuation ring is Noetherian if and only if it is a principal ideal domain. In this case, it is either a field or it has exactly one non-zero prime ideal; in the latter case it is called a discrete valuation ring.
A value group is called discrete if it is isomorphic to the additive group of the integers, and a valuation ring has a discrete valuation group if and only if it is a discrete valuation ring.
Very rarely, valuation ring may refer to a ring that satisfies the second or third condition but is not necessarily a domain. A more common term for this type of ring is "uniserial ring".

Examples

For a given totally ordered abelian group Γ and a residue field k, define K = k) to be the ring of formal power series whose powers come from Γ, that is, the elements of K are functions from Γ to k such that the support of each function is a well-ordered subset of Γ. Addition is pointwise, and multiplication is the Cauchy product or convolution, that is the natural operation when viewing the functions as power series:
The valuation ν for f in K is defined to be the least element of the support of f, that is the least element g of Γ such that f is nonzero. The f with ν≥0, form a subring D of K that is a valuation ring with value group Γ, valuation ν, and residue field k. This construction is detailed in, and follows a construction of which uses quotients of polynomials instead of power series.

Dominance and integral closure

The units, or invertible elements, of a valuation ring are the elements x such that x −1 is also a member of D. The other elements of D, called nonunits, do not have an inverse, and they form an ideal M. This ideal is maximal among the ideals of D. Since M is a maximal ideal, the quotient ring D/M is a field, called the residue field of D.
In general, we say a local ring dominates a local ring if and ; in other words, the inclusion is a local ring homomorphism. Every local ring in a field K is dominated by some valuation ring of K. Indeed, the set consisting of all subrings R of K containing A and is nonempty and is inductive; thus, has a maximal element by Zorn's lemma. We claim R is a valuation ring. R is a local ring with maximal ideal containing by maximality. Again by maximality it is also integrally closed. Now, if, then, by maximality, and thus we can write:
Since is a unit element, this implies that is integral over R; thus is in R. This proves R is a valuation ring.
A local ring R in a field K is a valuation ring if and only if it is a maximal element of the set of all local rings contained in K partially ordered by dominance. This easily follows from the above.
Let A be a subring of a field K and a ring homomorphism into an algebraically closed field k. Then f extends to a ring homomorphism, D some valuation ring of K containing A.
If a subring R of a field K contains a valuation ring D of K, then, by checking Definition 1, R is also a valuation ring of K. In particular, R is local and its maximal ideal contracts to some prime ideal of D, say,. Then since dominates, which is a valuation ring since the ideals are totally ordered. This observation is subsumed to the following: there is a bijective correspondence the set of all subrings of K containing D. In particular, D is integrally closed, and the Krull dimension of D is the cardinality of proper subrings of K containing D.
In fact, the integral closure of an integral domain A in the field of fractions K of A is the intersection of all valuation rings of K containing A. Indeed, the integral closure is contained in the intersection since the valuation rings are integrally closed. Conversely, let x be in K but not integral over A. Since the ideal is not, it is contained in a maximal ideal. Then there is a valuation ring R that dominates the localization of at. Since,.
The dominance is used in algebraic geometry. Let X be an algebraic variety over a field k. Then we say a valuation ring R in has "center x on X" if dominates the local ring of the structure sheaf at x.

Ideals in valuation rings

We may describe the ideals in the valuation ring by means of its value group.
Let Γ be a totally ordered abelian group. A subset Δ of Γ is called a segment if it is nonempty and, for any α in Δ, any element between -α and α is also in Δ. A subgroup of Γ is called an isolated subgroup if it is a segment and is a proper subgroup.
Let D be a valuation ring with valuation v and value group Γ. For any subset A of D, we let be the complement of the union of and in. If I is a proper ideal, then is a segment of. In fact, the mapping defines an inclusion-reversing bijection between the set of proper ideals of D and the set of segments of. Under this correspondence, the nonzero prime ideals of D correspond bijectively to the isolated subgroups of Γ.
Example: The ring of p-adic integers is a valuation ring with value group. The zero subgroup of corresponds to the unique maximal ideal and the whole group to the zero ideal. The maximal ideal is the only isolated subgroup of.
The set of isolated subgroups is totally ordered by inclusion. The height or rank r of Γ is defined to be the cardinality of the set of isolated subgroups of Γ. Since the nonzero prime ideals are totally ordered and they correspond to isolated subgroups of Γ, the height of Γ is equal to the Krull dimension of the valuation ring D associated with Γ.
The most important special case is height one, which is equivalent to Γ being a subgroup of the real numbers ℝ under addition A valuation ring with a valuation of height one has a corresponding absolute value defining an ultrametric place. A special case of this are the discrete valuation rings mentioned earlier.
The rational rank rr is defined as the rank of the value group as an abelian group,

Places

The reference to this section is Zariski–Samuel.

General definition

A place of a field K is a ring homomorphism p from a valuation ring D of K to some field such that, for any,. The image of a place is a field called the residue field of p. For example, the canonical map is a place.

Example

Let A be a Dedekind domain and a prime ideal. Then the canonical map is a place.

Specialization of places

We say a place p specializes to a place p', denoted by, if the valuation ring of p contains the valuation ring of p'. In algebraic geometry, we say a prime ideal specializes to if. The two notions coincide: if and only if a prime ideal corresponding to p specializes to a prime ideal corresponding to p' in some valuation ring

Example

For example, in the function field of some algebraic variety every prime ideal contained in a maximal ideal gives a specialization.

Remarks

It can be shown: if, then for some place q of the residue field of p. If D is a valuation ring of p, then its Krull dimension is the cardinarity of the specializations other than p to p. Thus, for any place p with valuation ring D of a field K over a field k, we have:
If p is a place and A is a subring of the valuation ring of p, then is called the center of p in A.

Places at infinity

For the function field on an affine variety there are valuations which are not associated to any of the primes of. These valuations are called the places at infinity. For example, the affine line has function field. The place associated to the localization of
at the maximal ideal
is a place at infinity.