Uniform coloring


In geometry, a uniform coloring is a property of a uniform figure that is colored to be vertex-transitive. Different symmetries can be expressed on the same geometric figure with the faces following different uniform color patterns.
A uniform coloring can be specified by listing the different colors with indices around a vertex figure.

n-uniform figures

In addition, an n-uniform coloring is a property of a uniform figure which has n types vertex figure, that are collectively vertex transitive.

Archimedean coloring

A related term is Archimedean color requires one vertex figure coloring repeated in a periodic arrangement. A more general term are k-Archimedean colorings which count k distinctly colored vertex figures.
For example this Archimedean coloring of a triangular tiling has two colors, but requires 4 unique colors by symmetry positions and become a 2-uniform coloring :

1-Archimedean coloring
111112

2-uniform coloring
112344 and 121434