Topological insulator


A topological insulator is a material that behaves as an insulator in its interior but whose surface contains conducting states, meaning that electrons can only move along the surface of the material. Topological insulators have non-trivial symmetry-protected topological order; however, having a conducting surface is not unique to topological insulators, since ordinary band insulators can also support conductive surface states. What is special about topological insulators is that their surface states are symmetry-protected Dirac fermions. by particle number conservation and time-reversal symmetry. In two-dimensional systems, this ordering is analogous to a conventional electron gas subject to a strong external magnetic field causing electronic excitation gap in the sample bulk and metallic conduction at the boundaries or surfaces.
The distinction between 2D and 3D topological insulators is characterized by the Z-2 topological invariant, which defines the ground state. In 2D, there is a single Z-2 invariant distinguishing the insulator from the quantum spin-Hall phase, while in 3D, there are four Z-2 invariant that differentiate the insulator from “weak” and “strong” topological insulators.
In the bulk of a non-interacting topological insulator, the electronic band structure resembles an ordinary band insulator, with the Fermi level falling between the conduction and valence bands. On the surface of a topological insulator there are special states that fall within the bulk energy gap and allow surface metallic conduction. Carriers in these surface states have their spin locked at a right-angle to their momentum. At a given energy the only other available electronic states have different spin, so the "U"-turn scattering is strongly suppressed and conduction on the surface is highly metallic. Non-interacting topological insulators are characterized by an index similar to the genus in topology.
As long as time-reversal symmetry is preserved, the index cannot change by small perturbations and the conducting states at the surface are symmetry-protected. On the other hand, in the presence of magnetic impurities, the surface states will generically become insulating. Nevertheless, if certain crystalline symmetries like inversion are present, the index is still well defined. These materials are known as magnetic topological insulators and their insulating surfaces exhibit a half-quantized surface anomalous Hall conductivity.
Photonic topological insulators are the classical-wave electromagnetic counterparts of topological insulators, that provide unidirectional propagation of electromagnetic waves.

Prediction

Time-reversal symmetry-protected two-dimensional edge states were predicted in 1987 by Oleg Pankratov to occur in quantum wells of mercury telluride sandwiched between cadmium telluride, and were observed in 2007. It was discovered that electrons that are confined to two dimensions and subject to strong magnetic field show a different topological ordering, which underlies the quantum Hall effect. The effect of this topological ordering results in the emergence of particles with fractional charges and non-dissipation transport. The distinguishing features of topological materials stems in the fact that they are insulating in the bulk but have a "protected" metallic properties at the edge or surface state. These "protected" gapless states are governed by the time-reversal symmetry and the band structure of the material.
In 2007, it was predicted that similar topological insulators might be found in binary compounds involving bismuth, and in particular "strong topological insulators" exist that cannot be reduced to multiple copies of the quantum spin Hall state.

Experimental realization

Topological insulators were first realized in 2D in system containing HgTe quantum wells sandwiched between cadmium telluride in 2007.
The first 3D topological insulator to be realized experimentally was Bi1 − x Sb x. Bismuth in its pure state, is a semimetal with a small electronic band gap. Using angle- resolved photoemission spectroscopy, and other measurements, it was observed that Bi1 − xSbx alloy exhibits an odd surface state crossing between any pair of Kramers points and the bulk features massive Dirac fermions. Additionally, bulk Bi1 − xSbx has been predicted to have 3D Dirac particles. This prediction is of particular interest due to the observation of charge quantum Hall fractionalization in 2D graphene and pure bismuth.
Shortly thereafter symmetry-protected surface states were also observed in pure antimony, bismuth selenide, bismuth telluride and antimony telluride using angle-resolved photoemission spectroscopy. and bismuth selenide. Many semiconductors within the large family of Heusler materials are now believed to exhibit topological surface states. In some of these materials, the Fermi level actually falls in either the conduction or valence bands due to naturally-occurring defects, and must be pushed into the bulk gap by doping or gating. The surface states of a 3D topological insulator is a new type of two-dimensional electron gas where the electron's spin is locked to its linear momentum.
Fully bulk-insulating or intrinsic 3D topological insulator states exist in Bi-based materials as demonstrated in surface transport measurements. In a new Bi based chalcogenide with slightly Sn - doping, exhibits an intrinsic semiconductor behavior with Fermi energy and Dirac point lie in the bulk gap and the surface states were probed by the charge transport experiments.
In was proposed in 2008 and 2009 that topological insulators are best understood not as surface conductors per se, but as bulk 3D magnetoelectrics with a quantized magnetoelectric effect. This can be revealed by placing topological insulators in magnetic field. The effect can be described in language similar to that of the hypothetical axion particle of particle physics. The effect was reported by researchers at Johns Hopkins University and Rutgers University using THz spectroscopy who showed that the Faraday rotation was quantized by the fine structure constant.
In 2012, topological Kondo insulators were identified in samarium hexaboride, which is a bulk insulator at low temperatures.
In 2014, it was shown that magnetic components, like the ones in spin-torque computer memory, can be manipulated by topological insulators. The effect is related to metal–insulator transitions.

Properties and applications

Spin-momentum locking in the topological insulator allows symmetry-protected surface states to host Majorana particles if superconductivity is induced on the surface of 3D topological insulators via proximity effects. The non-trivialness of topological insulators is encoded in the existence of a gas of helical Dirac fermions. Dirac particles which behave like massless relativistic fermions have been observed in 3D topological insulators. Note that the gapless surface states of topological insulators differ from those in the quantum Hall effect: the gapless surface states of topological insulators are symmetry-protected, while the gapless surface states in quantum Hall effect are topological. The topological invariants cannot be measured using traditional transport methods, such as spin Hall conductance, and the transport is not quantized by the invariants. An experimental method to measure topological invariants was demonstrated which provide a measure of the topological order. More generally for each spatial dimensionality, each of the ten Altland—Zirnbauer symmetry classes of random Hamiltonians labelled by the type of discrete symmetry has a corresponding group of topological invariants as described by the periodic table of topological invariants.
The most promising applications of topological insulators are spintronic devices and dissipationless transistors for quantum computers based on the quantum Hall effect and quantum anomalous Hall effect. In addition, topological insulator materials have also found practical applications in advanced magnetoelectronic and optoelectronic devices.

Synthesis

Topological insulators can be grown using different methods such as metal-organic chemical vapor deposition, solvothermal synthesis, sonochemical technique and molecular beam epitaxy
. MBE has so far been the most common experimental technique used in the growth of topological insulators. The growth of thin film topological insulators is governed by weak Van der Waals interactions. The weak interaction allows to exfoliate the thin film from bulk crystal with a clean and perfect surface. The Van der Waals interactions in epitaxy also known as Van der Waals epitaxy, is a phenomenon governed by weak Van der Waal’s interactions between layered materials of different or same elements in which the materials are stacked on top of each other. This approach allows the growth of layered topological insulators on other substrates for heterostructure and integrated circuits.
Molecular Beam Epitaxial growth of topological insulators
MBE is an epitaxy method for the growth of a crystalline material on a crystalline substrate to form an ordered layer. MBE is performed in high vacuum or ultra-high vacuum, the elements are heated in different electron beam evaporators until they sublime. The gaseous elements then condense on the wafer where they react with each other to form single crystals.
MBE is an appropriate technique for the growth of high quality single-crystal films. In order to avoid a huge lattice mismatch and defects at the interface, the substrate and thin film are expected to have similar lattice constants. MBE has an advantage over other methods due to the fact that the synthesis is performed in high vacuum hence resulting in less contamination. Additionally, lattice defect is reduced due to the ability to influence the growth rate and the ratio of species of source materials present at the substrate interface. Furthermore, in MBE, samples can be grown layer by layer which results in flat surfaces with smooth interface for engineered heterostructures. Moreover, MBE synthesis technique benefits from the ease of moving a topological insulator sample from the growth chamber to a characterization chamber such as angle-resolved photoemission spectroscopy or scanning tunneling microscopy studies.
Due to the weak Van der Waals bonding, which relaxes the lattice-matching condition, TI can be grown on a wide variety of substrates such as Si, Al2O3, GaAs,
InP, CdS and Y3Fe5O12.

Bismuth-based topological insulators

Thus far, the field of topological insulators has been focused on bismuth and antimony chalcogenide based materials such as Bi2Se3, Bi2Te3, Sb2Te3 or Bi1 − xSbx, Bi1.1Sb0.9Te2S. The choice of chalcogenides is related to the Van der Waals relaxation of the lattice matching strength which restricts the number of materials and substrates. Bismuth chalcogenides have been studied extensively for TIs and their applications in thermoelectric materials. The Van der Waals interaction in TIs exhibit important features due to low surface energy. For instance, the surface of Bi2Te3 is usually terminated by Te due to its low surface energy.
Bismuth chalcogenides have been successfully grown on different substrates. In particular, Si has been a good substrate for the successful growth of Bi2Te3. However, the use of sapphire as substrate has not been so encouraging due to a large mismatch of about 15%. The selection of appropriate substrate can improve the overall properties of TI. The use of buffer layer can reduce the lattice match hence improving the electrical properties of TI. Bi2Se3 can be grown on top of various Bi2 − xInxSe3 buffers. Table 1 shows Bi2Se3, Bi2Te3, Sb2Te3 on different substrates and the resulting lattice mismatch. Generally, regardless of the substrate used, the resulting films have a textured surface that is characterized by pyramidal single-crystal domains with quintuple-layer steps. The size and relative proportion of these pyramidal domains vary with factors that include film thickness, lattice mismatch with the substrate and interfacial chemistry-dependent film nucleation. The synthesis of thin films have the stoichiometry problem due to the high vapor pressures of the elements. Thus, binary tetradymites are extrinsically doped as n-type or p-type. Due to the weak van der Waals bonding, graphene is one of the preferred substrates for TI growth despite the large lattice mismatch.
SubstrateBi2Se3 %Bi2Te3 %Sb2Te3 %
graphene-40.6-43.8-42.3
Si-7.3-12.3-9.7
CaF2-6.8-11.9-9.2
GaAs-3.4-8.7-5.9
CdS-0.2-5.7-2.8
InP0.2-5.3-2.3
BaF25.90.12.8
CdTe10.74.67.8
Al2O314.98.712.0
SiO218.612.115.5

Identification of topological insulators

The first step of topological insulators identification takes place right after synthesis, meaning without breaking the vacuum and moving the sample to an atmosphere. That could be done by using angle-resolved photoemission spectroscopy or scanning tunneling microscopy techniques. Further measurements includes structural and chemical probes such as X-ray diffraction and energy-dispersive spectroscopy but depending on the sample quality, the lack of sensitivity could remain. Transport measurements cannot uniquely pinpoint the Z2 topology by definition of the state.

Future developments

The field of topological insulators still needs to be developed. The best bismuth chalcogenide topological insulators have about 10 meV bandgap variation due to the charge. Further development should focus on the examination of both: the presence of high-symmetry electronic bands and simply synthesized materials. One of the candidates is half-Heusler compounds. These crystal structures can consist of a large number of elements. Band structures and energy gaps are very sensitive to the valence configuration; because of the increased likelihood of intersite exchange and disorder, they are also very sensitive to specific crystalline configurations. A nontrivial band structure that exhibits band ordering analogous to that of the known 2D and 3D TI materials was predicted in a variety of 18-electron half-Heusler compounds using first-principles calculations. These materials have not yet shown any sign of intrinsic topological insulator behavior in actual experiments.