Synergetics (Fuller)
Synergetics is the empirical study of systems in transformation, with an emphasis on total system behavior unpredicted by the behavior of any isolated components, including humanity's role as both participant and observer.
Since systems are identifiable at every scale from the quantum level to the cosmic, and humanity both articulates the behavior of these systems and is composed of these systems, synergetics is a very broad discipline, and embraces a broad range of scientific and philosophical studies including tetrahedral and close-packed-sphere geometries, thermodynamics, chemistry, psychology, biochemistry, economics, philosophy and theology. Despite a few mainstream endorsements such as articles by Arthur Loeb and the naming of a molecule "buckminsterfullerene", synergetics remains an iconoclastic subject ignored by most traditional curricula and academic departments.
Buckminster Fuller coined the term and attempted to define its scope in his two-volume work Synergetics. His oeuvre inspired many researchers to tackle branches of synergetics: Haken explored self-organizing structures of open systems far from thermodynamic equilibrium, Amy Edmondson explored tetrahedral and icosahedral geometry, Stafford Beer tackled geodesics in the context of social dynamics, and Nystrom proposed a theory of computational cosmography. Many other researchers toil today on aspects of synergetics, though many deliberately distance themselves from Fuller's broad all-encompassing definition, given its problematic attempt to differentiate and relate all aspects of reality including the ideal and the physically realized, the container and the contained, the one and the many, the observer and the observed, the human microcosm and the universal macrocosm.
Definition
"Synergetics" is defined by R. Buckminster Fuller in his two books Synergetics: Explorations in the Geometry of Thinking and Synergetics 2: Explorations in the Geometry of Thinking as:A system of mensuration employing 60-degree vectorial coordination comprehensive to both physics and chemistry, and to both arithmetic and geometry, in rational whole numbers ... Synergetics explains much that has not been previously illuminated ... Synergetics follows the cosmic logic of the structural mathematics strategies of nature, which employ the paired sets of the six angular degrees of freedom, frequencies, and vectorially economical actions and their multi-alternative, equi-economical action options ... Synergetics discloses the excruciating awkwardness characterizing present-day mathematical treatment of the interrelationships of the independent scientific disciplines as originally occasioned by their mutual and separate lacks of awareness of the existence of a comprehensive, rational, coordinating system inherent in nature.
Other passages in Synergetics that outline the subject are its introduction and the section on Nature's Coordination. The chapter on Operational Mathematics provides an easy to follow, easy to build introduction to some of Fuller's geometrical modeling techniques. So this chapter can help a new reader become familiar with Fuller's approach, style and geometry. One of Fuller's clearest expositions on "the geometry of thinking" occurs in the two part essay "Omnidirectional Halo" which appears in his book No More Secondhand God.
Amy Edmondson describes synergetics "in the broadest terms, as the study of spatial complexity, and as such is an inherently comprehensive discipline." In her PhD study, Cheryl Clark synthesizes the scope of synergetics as "the study of how nature works, of the patterns inherent in nature, the geometry of environmental forces that impact on humanity."
Here's an abridged list of some of the discoveries Fuller claims for Synergetics again quoting directly:
- The rational volumetric quantation or constant proportionality of the octahedron, the cube, the rhombic triacontahedron, and the rhombic dodecahedron when referenced to the tetrahedron as volumetric unity.
- The trigonometric identification of the great-circle trajectories of the seven axes of symmetry with the 120 basic disequilibrium LCD triangles of the spherical icosahedron.
- The rational identification of number with the hierarchy of all the geometries.
- The A and B Quanta Modules.
- The volumetric hierarchy of Platonic and other symmetrical geometricals based on the tetrahedron and the A and B Quanta Modules as unity of coordinate mensuration.
- The identification of the nucleus with the vector equilibrium.
- Omnirationality: the identification of triangling and tetrahedroning with second- and third-powering factors.
- Omni-60-degree coordination versus 90-degree coordination.
- The integration of geometry and philosophy in a single conceptual system providing a common language and accounting for both the physical and metaphysical.
Significance
Tetrahedral accounting
A chief hallmark of this system of mensuration was its unit of volume: a tetrahedron defined by four closest-packed unit-radius spheres. This tetrahedron anchored a set of concentrically arranged polyhedra proportioned in a canonical manner and inter-connected by a twisting-contracting, inside-outing dynamic named the Jitterbug Transformation.Corresponding to Fuller's use of a regular tetrahedron as his unit of volume was his replacing the cube as his model of 3rd powering. The relative size of a shape was indexed by its "frequency," a term he deliberately chose for its resonance with scientific meanings. "Size and time are synonymous. Frequency and size are the same phenomenon." Shapes not having any size, because purely conceptual in the Platonic sense, were "prefrequency" or "subfrequency" in contrast.
Generalized principles, although communicated energetically, did not inhere in the "special case" episodes, were considered "metaphysical" in that sense.
Tetrahedral mensuration also involved substituting what Fuller called the "isotropic vector matrix" for the standard XYZ coordinate system, as his principal conceptual backdrop for special case physicality:
The IVM scaffolding or skeletal framework was defined by cubic closest packed spheres, alternatively known as the FCC or face-centered cubic lattice, or as the octet truss in architecture. The space-filling complementary tetrahedra and octahedra characterizing this matrix had prefrequency volumes 1 and 4 respectively. A third consequence of switching to tetrahedral mensuration was Fuller's review of the standard "dimension" concept. Whereas "height, width and depth" have been promulgated as three distinct dimensions within the Euclidean context, each with its own independence, Fuller considered the tetrahedron a minimal starting point for spatial cognition. His use of "4D" was in many passages close to synonymous with the ordinary meaning of "3D," with the dimensions of physicality considered additional dimensions.
Synergetics did not aim to replace or invalidate pre-existing geometry or mathematics, it was designed to carve out a new foundation with a language that would serve to provide a new source of insights. Starting with the UniverseFuller's geometric explorations provided an experiential basis for designing and refining a philosophical language. His overarching concern was the co-occurring relationship between tensile and compressive tendencies within an eternally regenerative Universe. "Universe" is a proper name he defined in terms of "partially overlapping scenarios" while avoiding any static picture or model of same. His Universe was "non-simultaneously conceptual":
U = MP described a first division of Universe into metaphysical and physical aspects, the former associated with invisibly cohesive tension, the latter with energy events, both associative as matter and disassociative as radiation. Synergetics also distinguished between gravitational and precessional relationships among moving bodies, the latter referring to the vast majority of cosmic relationships, which are non-180-degree and do not involve bodies "falling in" to one another. "Precession" is a nuanced term in the synergetics vocabulary, relating to the behavior of gyroscopes, but also to side-effects. Intuitive geometryFuller took an intuitive approach to his studies, often going into exhaustive empirical detail while at the same time seeking to cast his findings in their most general philosophical context.For example, his sphere packing studies led him to generalize a formula for polyhedral numbers: 2 P F2 + 2, where F stands for "frequency" and P for a product of low order primes. He then related the "multiplicative 2" and "additive 2" in this formula to the convex versus concave aspects of shapes, and to their polar spinnability respectively. These same polyhedra, developed through sphere packing and related by tetrahedral mensuration, he then spun around their various poles to form great circle networks and corresponding triangular tiles on the surface of a sphere. He exhaustively cataloged the central and surface angles of these spherical triangles and their related chord factors. Fuller was continually on the lookout for ways to connect the dots, often purely speculatively. As an example of "dot connecting" he sought to relate the 120 basic disequilibrium LCD triangles of the spherical icosahedron to the plane net of his A module. The Jitterbug Transformation provided a unifying dynamic in this work, with much significance attached to the doubling and quadrupling of edges that occurred, when a cuboctahedron is collapsed through icosahedral, octahedral and tetrahedral stages, then inside-outed and re-expanded in a complementary fashion. The JT formed a bridge between 3,4-fold rotationally symmetric shapes, and the 5-fold family, such as a rhombic triacontahedron, which later he analyzed in terms of the T module, another tetrahedral wedge with the same volume as his A and B modules. He modeled energy transfer between systems by means of the double-edged octahedron and its ability to turn into a spiral. Energy lost to one system always reappeared somewhere else in his Universe. He modeled a threshold between associative and disassociative energy patterns with his T-to-E module transformation. "Synergetics" is in some ways a library of potential "science cartoons" described in prose and not heavily dependent upon mathematical notations. His demystification of a gyroscope's behavior in terms of a hammer thrower, pea shooter, and garden hose, is a good example of his commitment to using accessible metaphors. His modular dissection of a space-filling tetrahedron or MITE into 2 A and 1 B module served as a basis for more speculations about energy, the former being more energy conservative, the latter more dissipative in his analysis.. His focus was reminiscent of later cellular automaton studies in that tessellating modules would affect their neighbors over successive time intervals. Social commentarySynergetics informed Fuller's social analysis of the human condition. He identified "ephemeralization" as the trend towards accomplishing more with less physical resources, as a result of increasing comprehension of such "generalized principles" as E = Mc2.He remained concerned that humanity's conditioned reflexes were not keeping pace with its engineering potential, emphasizing the "touch and go" nature of our current predicament. Fuller hoped the streamlining effects of a more 60-degree-based approach within natural philosophy would help bridge the gap between C.P. Snow's "two cultures" and result in a greater level of scientific literacy in the general population. Academic acceptanceFuller hoped to gain traction for his ideas and nomenclature by dedicating Synergetics to H.S.M. Coxeter and by citing page 71 of the latter's Regular Polytopes to suggest where his A & B modules might enter the literature. Dr. Arthur Loeb provided a prologue and an appendix to Synergetics discussing its overlap with crystallography, chemistry and virology.ErrataA major error, caught by Fuller himself, involved a misapplication of his Synergetics Constant in Synergetics 1, which led to the mistaken belief he had discovered a radius 1 sphere of 5 tetravolumes. He provided a correction in Synergetics 2 in the form of his T&E module thread.About synergySynergetics refers to synergy: either the concept of the output of a system not foreseen by the simple sum of the output of each system part, or simply — less used — another term for negative entropy — negentropy. |