A diffeomorphism between two symplectic manifolds is called a symplectomorphism if where is the pullback of. The symplectic diffeomorphisms from to are a group, called the symplectomorphism group. The infinitesimal version of symplectomorphisms gives the symplectic vector fields. A vector field is called symplectic if Also, is symplectic iff the flow of is a symplectomorphism for every. These vector fields build a Lie subalgebra of. Examples of symplectomorphisms include the canonical transformations of classical mechanics and theoretical physics, the flow associated to any Hamiltonian function, the map on cotangent bundles induced by any diffeomorphism of manifolds, and the coadjoint action of an element of a Lie Group on a coadjoint orbit.
The symplectomorphisms from a manifold back onto itself form an infinite-dimensional pseudogroup. The corresponding Lie algebra consists of symplectic vector fields. The Hamiltonian symplectomorphisms form a subgroup, whose Lie algebra is given by the Hamiltonian vector fields. The latter is isomorphic to the Lie algebra of smooth functions on the manifold with respect to the Poisson bracket, modulo the constants. The group of Hamiltonian symplectomorphisms of usually denoted as. Groups of Hamiltonian diffeomorphisms are simple, by a theorem of Banyaga. They have natural geometry given by the Hofer norm. The homotopy type of the symplectomorphism group for certain simple symplectic four-manifolds, such as the product of spheres, can be computed using Gromov's theory ofpseudoholomorphic curves.
Unlike Riemannian manifolds, symplectic manifolds are not very rigid: Darboux's theorem shows that all symplectic manifolds of the same dimension are locally isomorphic. In contrast, isometries in Riemannian geometry must preserve the Riemann curvature tensor, which is thus a local invariant of the Riemannian manifold. Moreover, every function H on a symplectic manifold defines a Hamiltonian vector field XH, which exponentiates to a one-parameter group of Hamiltonian diffeomorphisms. It follows that the group of symplectomorphisms is always very large, and in particular, infinite-dimensional. On the other hand, the group of isometries of a Riemannian manifold is always a Lie group. Moreover, Riemannian manifolds with large symmetry groups are very special, and a generic Riemannian manifold has no nontrivial symmetries.
Quantizations
Representations of finite-dimensional subgroups of the group of symplectomorphisms on Hilbert spaces are called quantizations. When the Lie group is the one defined by a Hamiltonian, it is called a "quantization by energy". The corresponding operator from the Lie algebra to the Lie algebra of continuous linear operators is also sometimes called the quantization; this is a more common way of looking at it in physics.
Arnold conjecture
A celebrated conjecture of Vladimir Arnold relates the minimum number of fixed points for a Hamiltonian symplectomorphism on M, in case M is a closed manifold, to Morse theory. More precisely, the conjecture states that has at least as many fixed points as the number of critical points that a smooth function on M must have. It is known that this would follow from the Arnold–Givental conjecture named after Arnold and Alexander Givental, which is a statement on Lagrangian submanifolds. It is proven in many cases by the construction of symplectic Floer homology.