Silicon on insulator
In semiconductor manufacturing, silicon on insulator technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.
Industry need
SOI technology is one of several manufacturing strategies to allow the continued miniaturization of microelectronic devices, colloquially referred to as "extending Moore's Law". Reported benefits of SOI relative to conventional silicon processing include:- Lower parasitic capacitance due to isolation from the bulk silicon, which improves power consumption at matched performance
- Resistance to latchup due to complete isolation of the n- and p-well structures
- Higher performance at equivalent VDD. Can work at low VDD's
- Reduced temperature dependency due to no doping
- Better yield due to high density, better wafer utilization
- Reduced antenna issues
- No body or well taps are needed
- Lower leakage currents due to isolation thus higher power efficiency
- Inherently radiation hardened, reducing the need for redundancy
The primary barrier to SOI implementation is the drastic increase in substrate cost, which contributes an estimated 10-15% increase to total manufacturing costs.
SOI transistors
An SOI MOSFET is a metal-oxide-semiconductor field-effect transistor device in which a semiconductor layer such as silicon or germanium is formed on an insulator layer which may be a buried oxide layer formed in a semiconductor substrate. SOI MOSFET devices are adapted for use by the computer industry. The buried oxide layer can be used in SRAM designs. There are two types of SOI devices: PDSOI and FDSOI MOSFETs. For an n-type PDSOI MOSFET the sandwiched p-type film between the gate oxide and buried oxide is large, so the depletion region can't cover the whole p region. So to some extent PDSOI behaves like bulk MOSFET. Obviously there are some advantages over the bulk MOSFETs. The film is very thin in FDSOI devices so that the depletion region covers the whole film. In FDSOI the front gate supports fewer depletion charges than the bulk so an increase in inversion charges occurs resulting in higher switching speeds. The limitation of the depletion charge by the BOX induces a suppression of the depletion capacitance and therefore a substantial reduction of the subthreshold swing allowing FD SOI MOSFETs to work at lower gate bias resulting in lower power operation. The subthreshold swing can reach the minimum theoretical value for MOSFET at 300K, which is 60mV/decade. This ideal value was first demonstrated using numerical simulation. Other drawbacks in bulk MOSFETs, like threshold voltage roll off, etc. are reduced in FDSOI since the source and drain electric fields can't interfere due to the BOX. The main problem in PDSOI is the "floating body effect " since the film is not connected to any of the supplies.Manufacture of SOI wafers
SiO2-based SOI wafers can be produced by several methods:- SIMOX - Separation by IMplantation of OXygen - uses an oxygen ion beam implantation process followed by high temperature annealing to create a buried SiO2 layer.
- Wafer bonding - the insulating layer is formed by directly bonding oxidized silicon with a second substrate. The majority of the second substrate is subsequently removed, the remnants forming the topmost Si layer.
- *One prominent example of a wafer bonding process is the Smart Cut method developed by the French firm Soitec which uses ion implantation followed by controlled exfoliation to determine the thickness of the uppermost silicon layer.
- *NanoCleave is a technology developed by Silicon Genesis Corporation that separates the silicon via stress at the interface of silicon and silicon-germanium alloy.
- *ELTRAN is a technology developed by Canon which is based on porous silicon and water cut.
- Seed methods - wherein the topmost Si layer is grown directly on the insulator. Seed methods require some sort of template for homoepitaxy, which may be achieved by chemical treatment of the insulator, an appropriately oriented crystalline insulator, or vias through the insulator from the underlying substrate.
Microelectronics industry
Research
The silicon-on-insulator concept dates back to 1964, when it was proposed by C.W. Miller and P.H. Robinson. In 1979, a Texas Instruments research team including A.F. Tasch, T.C. Holloway and Kai Fong Lee fabricated a silicon-on-insulator MOSFET. In 1983, a Fujitsu research team led by S. Kawamura fabricated a three-dimensional integrated circuit with SOI CMOS structure. In 1984, the same Fujitsu research team fabricated a 3D gate array with vertically-stacked dual SOI/CMOS structure using beam recrystallization. The same year, Electrotechnical Laboratory researchers Toshihiro Sekigawa and Yutaka Hayashi fabricated a double-gate MOSFET, demonstrating that short-channel effects can be significantly reduced by sandwiching a fully depleted SOI device between two gate electrodes connected together. In 1986, Jean-Pierre Colinge at HP Labs fabricated SOI NMOS devices using 90 nm thin silicon films.In 1989, Ghavam G. Shahidi initiated the SOI Research Program at the IBM Thomas J Watson Research Center. He was the chief architect of SOI technology at IBM Microelectronics, where he made fundamental contributions, from materials research to the development of the first commercially viable devices, with the support of his boss Bijan Davari. Shahidi was a key figure in making SOI CMOS technology a manufacturable reality. In the early 1990s, he demonstrated a novel technique of combining silicon epitaxial overgrowth and chemical mechanical polishing to prepare device-quality SOI material for fabricating devices and simple circuits, which led to IBM expanding its research program to include SOI substrates. He was also the first to demonstrate the power-delay advantage of SOI CMOS technology over traditional bulk CMOS in microprocessor applications. He overcame barriers preventing the semiconductor industry's adoption of SOI, and was instrumental in driving SOI substrate development to the quality and cost levels suitable for mass-production.
In 1994, an IBM research team led by Shahidi, Bijan Davari and Robert H. Dennard fabricated the first sub-100 nanometer SOI CMOS devices. In 1998, a team of Hitachi, TSMC and UC Berkeley researchers demonstrated the FinFET, which is a non-planar, double-gate MOSFET built on an SOI substrate. In early 2001, Shahidi used SOI to developed a low-power RF CMOS device, resulting in increased radio frequency, at IBM.
Commercialization
Shahidi's research at IBM led to the first commercial use of SOI in mainstream CMOS technology. SOI was first commercialized in 1995, when Shahidi's work on SOI convinced John Kelly, who ran IBM's server division, to adopt SOI in the AS/400 line of server products, which used 220 nm CMOS with copper metallization SOI devices. IBM began to use SOI in the high-end RS64-IV "Istar" PowerPC-AS microprocessor in 2000. Other examples of microprocessors built on SOI technology include AMD's 130 nm, 90 nm, 65 nm, 45 nm and 32 nm single, dual, quad, six and eight core processors since 2001.In late 2001, IBM was set to introduce 130 nanometer CMOS SOI devices with copper and low-κ dielectric for the back end, based on Shahidi's work. Freescale adopted SOI in their PowerPC 7455 CPU in late 2001. Currently, Freescale is shipping SOI products in 180 nm, 130 nm, 90 nm and 45 nm lines. The 90 nm PowerPC- and Power ISA-based processors used in the Xbox 360, PlayStation 3, and Wii use SOI technology as well. Competitive offerings from Intel however continue to use conventional bulk CMOS technology for each process node, instead focusing on other venues such as HKMG and tri-gate transistors to improve transistor performance. In January 2005, Intel researchers reported on an experimental single-chip silicon rib waveguide Raman laser built using SOI.
As for the traditional foundries, on July 2006 TSMC claimed no customer wanted SOI, but Chartered Semiconductor devoted a whole fab to SOI.