Runcinated 5-cell
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.
There are 3 unique degrees of runcinations of the 5-cell, including with permutations, truncations, and cantellations.
Runcinated 5-cell
The runcinated 5-cell or small prismatodecachoron is constructed by expanding the cells of a 5-cell radially and filling in the gaps with triangular prisms and tetrahedra. It consists of 10 tetrahedra and 20 triangular prisms. The 10 tetrahedra correspond with the cells of a 5-cell and its dual.Topologically, under its highest symmetry,
E. L. Elte identified it in 1912 as a semiregular polytope.
Alternative names
- Runcinated 5-cell
- Runcinated pentachoron
- Runcinated 4-simplex
- Expanded 5-cell/4-simplex/pentachoron
- Small prismatodecachoron
Structure
Dissection
The runcinated 5-cell can be dissected by a central cuboctahedron into two tetrahedral cupola. This dissection is analogous to the 3D cuboctahedron being dissected by a central hexagon into two triangular cupola.Images
View inside of a 3-sphere projection Schlegel diagram with its 10 tetrahedral cells | Net |
Coordinates
The Cartesian coordinates of the vertices of an origin-centered runcinated 5-cell with edge length 2 are:An alternate simpler set of coordinates can be made in 5-space, as 20 permutations of:
This construction exists as one of 32 orthant facets of the runcinated 5-orthoplex.
A second construction in 5-space, from the center of a rectified 5-orthoplex is given by coordinate permutations of:
Root vectors
Its 20 vertices represent the root vectors of the simple Lie group A4. It is also the vertex figure for the 5-cell honeycomb in 4-space.Cross-sections
The maximal cross-section of the runcinated 5-cell with a 3-dimensional hyperplane is a cuboctahedron. This cross-section divides the runcinated 5-cell into two tetrahedral hypercupolae consisting of 5 tetrahedra and 10 triangular prisms each.Projections
The tetrahedron-first orthographic projection of the runcinated 5-cell into 3-dimensional space has a cuboctahedral envelope. The structure of this projection is as follows:- The cuboctahedral envelope is divided internally as follows:
- The other half, the 'southern hemisphere', corresponds to an isomorphic division of the cuboctahedron in dual orientation, in which the central tetrahedron is dual to the one in the first half. The triangular faces of the cuboctahedron join the triangular prisms in one hemisphere to the flattened tetrahedra in the other hemisphere, and vice versa. Thus, the southern hemisphere contains another 5 tetrahedra and another 10 triangular prisms, making the total of 10 tetrahedra and 20 triangular prisms.
Related skew polyhedron
Runcitruncated 5-cell
The runcitruncated 5-cell or prismatorhombated pentachoron is composed of 60 vertices, 150 edges, 120 faces, and 30 cells. The cells are: 5 truncated tetrahedra, 10 hexagonal prisms, 10 triangular prisms, and 5 cuboctahedra. Each vertex is surrounded by five cells: one truncated tetrahedron, two hexagonal prisms, one triangular prism, and one cuboctahedron; the vertex figure is a rectangular pyramid.Alternative names
- Runcitruncated pentachoron
- Runcitruncated 4-simplex
- Diprismatodispentachoron
- Prismatorhombated pentachoron
Images
Schlegel diagram with its 40 blue triangular faces and its 60 green quad faces. | Central part of Schlegel diagram. |
Coordinates
The Cartesian coordinates of an origin-centered runcitruncated 5-cell having edge length 2 are:The vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:
This construction is from the positive orthant facet of the runcitruncated 5-orthoplex.
Omnitruncated 5-cell
The omnitruncated 5-cell or great prismatodecachoron is composed of 120 vertices, 240 edges, 150 faces, and 30 cells. The cells are: 10 truncated octahedra, and 20 hexagonal prisms. Each vertex is surrounded by four cells: two truncated octahedra, and two hexagonal prisms, arranged in two phyllic disphenoidal vertex figures.Coxeter calls this Hinton's polytope after C. H. Hinton, who described it in his book The Fourth Dimension in 1906. It forms a [|uniform honeycomb] which Coxeter calls Hinton's honeycomb.
Alternative names
- Omnitruncated 5-cell
- Omnitruncated pentachoron
- Omnitruncated 4-simplex
- Great prismatodecachoron
- Hinton's polytope
Images
Omnitruncated 5-cell | Dual to omnitruncated 5-cell |
Perspective projections
Permutohedron
Just as the truncated octahedron is the permutohedron of order 4, the omnitruncated 5-cell is the permutohedron of order 5.The omnitruncated 5-cell is a zonotope, the Minkowski sum of five line segments parallel to the five lines through the origin and the five vertices of the 5-cell.
as a permutohedron
Tessellations
The omnitruncated 5-cell honeycomb can tessellate 4-dimensional space by translational copies of this cell, each with 3 hypercells around each face. This honeycomb's Coxeter diagram is. Unlike the analogous honeycomb in three dimensions, the bitruncated cubic honeycomb which has three different Coxeter group Wythoff constructions, this honeycomb has only one such construction.Symmetry
The omnitruncated 5-cell has extended pentachoric symmetry,, order 240. The vertex figure of the omnitruncated 5-cell represents the Goursat tetrahedron of the Coxeter group. The extended symmetry comes from a 2-fold rotation across the middle order-3 branch, and is represented more explicitly as 2+[3,3,3.Coordinates
The Cartesian coordinates of the vertices of an origin-centered omnitruncated 5-cell having edge length 2 are:These vertices can be more simply obtained in 5-space as the 120 permutations of.
This construction is from the positive orthant facet of the [runcicantitruncated 5-orthoplex, t0,1,2,3,.
Related polytopes
Nonuniform variants with symmetry and two types of truncated octahedra can be doubled by placing the two types of truncated octahedra on each other to produce a nonuniform polychoron with 10 truncated octahedra, two types of 40 hexagonal prisms, two kinds of 90 rectangular trapezoprisms, and 240 vertices. Its vertex figure is an irregular triangular bipyramid.Vertex figure
This polychoron can then be alternated to produce another nonuniform polychoron with 10 icosahedra, two types of 40 octahedra, three kinds of 210 tetrahedra, and 120 vertices. It has a symmetry of 3,3,3]+], order 120.
Vertex figure
Full snub 5-cell
The full snub 5-cell or omnisnub 5-cell, defined as an alternation of the omnitruncated 5-cell, cannot be made uniform, but it can be given Coxeter diagram, and symmetry +, order 120, and constructed from 90 cells: 10 icosahedrons, 20 octahedrons, and 60 tetrahedrons filling the gaps at the deleted vertices. It has 300 faces, 270 edges, and 60 vertices.Topologically, under its highest symmetry, +, the 10 icosahedra have T symmetry, while the 20 octahedra have D3 symmetry and the 60 tetrahedra have C2 symmetry.