Real gas


Real gases are nonideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law.
To understand the behaviour of real gases, the following must be taken into account:
For most applications, such a detailed analysis is unnecessary, and the ideal gas approximation can be used with reasonable accuracy. On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, to explain the Joule–Thomson effect and in other less usual cases. The deviation from ideality can be described by the compressibility factor Z.

Models

Van der Waals model

Real gases are often modeled by taking into account their molar weight and molar volume
or alternatively:
Where p is the pressure, T is the temperature, R the ideal gas constant, and Vm the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature and critical pressure using these relations:
The constants at critical point can be expressed as functions of the parameters a, b:
With the reduced properties the equation can be written in the reduced form:

Redlich–Kwong model

The Redlich–Kwong equation is another two-parameter equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two parameters. The equation is
or alternatively:
where a and b are two empirical parameters that are not the same parameters as in the van der Waals equation. These parameters can be determined:
The constants at critical point can be expressed as functions of the parameters a, b:
Using the equation of state can be written in the reduced form:

Berthelot and modified Berthelot model

The Berthelot equation is very rarely used,
but the modified version is somewhat more accurate

Dieterici model

This model fell out of usage in recent years
with parameters a, b, and

Clausius model

The Clausius equation is a very simple three-parameter equation used to model gases.
or alternatively:
where
where Vc is critical volume.

Virial model

The Virial equation derives from a perturbative treatment of statistical mechanics.
or alternatively
where A, B, C, A′, B′, and C′ are temperature dependent constants.

Peng–Robinson model

has the interesting property being useful in modeling some liquids as well as real gases.

Wohl model

The Wohl equation is formulated in terms of critical values, making it useful when real gas constants are not available, but it cannot be used for high densities, as for example the critical isotherm shows a drastic decrease of pressure when the volume is contracted beyond the critical volume.
or:
or, alternatively:
where
And with the reduced properties one can write the first equation in the reduced form:

Beattie–Bridgeman model

This equation is based on five experimentally determined constants. It is expressed as
where
This equation is known to be reasonably accurate for densities up to about 0.8 ρcr, where ρcr is the density of the substance at its critical point. The constants appearing in the above equation are available in the following table when p is in kPa, v is in, T is in K and R = 8.314
GasA0aB0bc
Air131.84410.019310.04611−0.0011014.34×104
Argon, Ar130.78020.023280.039310.05.99×104
Carbon dioxide, CO2507.28360.071320.104760.072356.60×105
Helium, He2.18860.059840.014000.040
Hydrogen, H220.0117−0.005060.02096−0.04359504
Nitrogen, N2136.23150.026170.05046−0.006914.20×104
Oxygen, O2151.08570.025620.046240.0042084.80×104

Benedict–Webb–Rubin model

The BWR equation, sometimes referred to as the BWRS equation,
where d is the molar density and where a, b, c, A, B, C, α, and γ are empirical constants. Note that the γ constant is a derivative of constant α and therefore almost identical to 1.

Thermodynamic expansion work

The expansion work of the real gas is different than that of the ideal gas by the quantity.