Planetary geology, alternatively known as astrogeology or exogeology, is a planetary science discipline concerned with the geology of the celestial bodies such as the planets and their moons, asteroids, comets, and meteorites. Although the geo- prefix typically indicates topics of or relating to Earth, planetary geology is named as such for historical and convenience reasons; due to the types of investigations involved, it is closely linked with Earth-based geology. Planetary geology includes such topics as determining the internal structure of the terrestrial planets, and also looks at planetary volcanism and surface processes such as impact craters, fluvial and aeolian processes. The structures of the giant planets and their moons are also examined, as is the make-up of the minor bodies of the Solar System, such as asteroids, the Kuiper Belt, and comets.
Several tools are used in planetary geology, including common archaeological tools such as hammers, shovels, brushes, etc. are often used by planetary geologists. Along with these common tools, new advanced technologies are used by planetary geologists Scientists also with these tools, use maps and images that telescopes on Earth and orbiting telescopes have taken different planetary bodies. The maps and images are stored in the NASA Planetary Data System where tools such as the Planetary Image Atlas help to search for certain items such as geological features including: mountains, ravines, and craters.
Features and terms
Planetary geology uses a wide variety of standardized descriptor names for features. All planetary feature names recognized by the International Astronomical Union combine one of these names with a possibly unique identifying name. The conventions which decide the more precise name are dependent on which planetary body the feature is on, but the standard descriptors are in general common to all astronomical planetary bodies. Some names have a long history of historical usage, but new must be recognized by the IAU Working Group for Planetary System Nomenclature as features are mapped and described by new planetary missions. This means that in some cases names may change as new imagery becomes available, or in other cases widely adopted informal names changed in line with the rules. The standard names are chosen to consciously avoid interpreting the underlying cause of the feature, but rather to describe only its appearance.