Orbitrap


In mass spectrometry, Orbitrap is an ion trap mass analyzer consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions is detected and converted to a mass spectrum using the Fourier transform of the frequency signal.

History

The concept of electrostatically trapping ions in an orbit around a central spindle was developed by Kenneth Hay Kingdon in the early 1920s. The Kingdon trap consists of a thin central wire and an outer cylindrical electrode. A static applied voltage results in a radial logarithmic potential between the electrodes. In 1981, Knight introduced a modified outer electrode that included an axial quadrupole term that confines the ions on the trap axis. Neither the Kingdon nor the Knight configurations were reported to produce mass spectra.
The invention of the Orbitrap analyzer and its proof-of-principle by Makarov at the end of the 1990s started a sequence of technology improvements which resulted in the commercial introduction of this analyzer by Thermo Fisher Scientific as a part of the hybrid LTQ Orbitrap instrument in 2005.

Principle of operation

Trapping

In the Orbitrap, ions are trapped because their electrostatic attraction to the inner electrode is balanced by their inertia. Thus, ions cycle around the inner electrode on elliptical trajectories. In addition, the ions also move back and forth along the axis of the central electrode so that their trajectories in space resemble helices. Due to the properties of the quadro-logarithmic potential, their axial motion is harmonic, i.e. it is completely independent not only of motion around the inner electrode but also of all initial parameters of the ions except their mass-to-charge ratios m/z. Its angular frequency is: ω =, where k is the force constant of the potential, similar to the spring constant.

Injection

In order to inject ions from an external ion source, the field between the electrodes is first reduced. As ion packets are injected tangentially into the field, the electric field is increased by ramping the voltage on the inner electrode. Ions get squeezed towards the inner electrode until they reach the desired orbit inside the trap. At that moment ramping is stopped, the field becomes static, and detection can start.
Each packet contains a multitude of ions of different velocities spread over a certain volume. These ions move with different rotational frequencies but with the same axial frequency. This means that ions of a specific mass-to-charge ratio spread into rings which oscillate along the inner spindle.
Proof-of-principle of the technology was carried out using the direct injection of ions from an external laser desorption and ionization ion source. This method of injection works well with pulsed sources such as MALDI but cannot be interfaced to continuous ion sources like electrospray.
All commercial Orbitrap mass spectrometers utilize a curved linear trap for ion injection. By rapidly ramping down trapping RF voltages and applying DC gradients across the C-trap, ions can be bunched into short packets similar to those from the laser ion source. The C-trap is tightly integrated with the analyzer, injection optics and differential pumping.

Excitation

In principle, coherent axial oscillations of ion rings could be excited by applying RF waveforms to the outer electrode as demonstrated in and references therein.
However, if ion packets are injected away from the minimum of the axial potential, this automatically initiates their axial oscillations, eliminating the need for any additional excitation. Furthermore, the absence of additional excitation allows the detection process to start as soon as the detection electronics recover from the voltage ramp needed for ion injection.

Detection

Axial oscillations of ion rings are detected by their image current induced on the outer electrode which is split into two symmetrical pick-up sensors connected to a differential amplifier. By processing data in a manner similar to that used in Fourier transform ion cyclotron resonance mass spectrometry, the trap can be used as a mass analyzer. Like in FTICR-MS, all the ions are detected simultaneously over some given period of time and resolution can be improved by increasing the strength of the field or by increasing the detection period. The Orbitrap differs from FTICR-MS by the absence of a magnetic field and hence has a significantly slower decrease of resolving power with increasing m/z.

Variants

Currently the Orbitrap analyzer exists in two variants: a standard trap and a compact high-field trap. In practical traps, the outer electrode is sustained at virtual ground and a voltage of 3.5 or 5 kV is applied to the inner electrode only. As a result, the resolving power at m/z 400 and 768 ms detection time can range from 60,000 for a standard trap at 3.5 kV to 280,000 for a high-field trap at 5 kV and with enhanced FT processing.
Like in FTICR-MS the Orbitrap resolving power is proportional to the number of harmonic oscillations of the ions; as a result, the resolving power is inversely proportional to the square root of m/z and proportional to acquisition time. For example, the values above would double for m/z 100 and halve for m/z 1600. For the shortest transient of 96 ms these values would be reduced by 8 times, whereas a resolving power in excess of 1,000,000 has been demonstrated in 3-second transients.
The Orbitrap analyzer can be interfaced to a linear ion trap, quadrupole mass filter or directly to an ion source. In addition, a higher-energy collision cell can be appended to the C-trap, with the further addition of electron-transfer dissociation at its back. Most of these instruments have atmospheric pressure ion sources though an intermediate-pressure MALDI source can also be used.
All of these instruments provide a high mass accuracy, a high resolving power, a high dynamic range and high sensitivity.

Applications

Orbitrap-based mass spectrometers are used in proteomics and are also used in life science mass spectrometry such as metabolism, metabolomics, environmental, food and safety analysis. Most of them are interfaced to liquid chromatography separations, though they are also used with gas chromatography and ambient ionization methods.