Mittag-Leffler star


In complex analysis, a branch of mathematics, the Mittag-Leffler star of a complex-analytic function is a set in the complex plane obtained by attempting to extend that function along rays emanating from a given point. This concept is named after Gösta Mittag-Leffler.

Definition and elementary properties

Formally, the Mittag-Leffler star of a complex-analytic function ƒ defined on an open disk U in the complex plane centered at a point a is the set of all points z in the complex plane such that ƒ can be continued analytically along the line segment joining a and z.
It follows from the definition that the Mittag-Leffler star is an open star-convex set and that it contains the disk U. Moreover, ƒ admits a single-valued analytic continuation to the Mittag-Leffler star.

Examples

Any complex-analytic function ƒ defined around a point a in the complex plane can be expanded in a series of polynomials which is convergent in the entire Mittag-Leffler star of ƒ at a. Each polynomial in this series is a linear combination of the first several terms in the Taylor series expansion of ƒ around a.
Such a series expansion of ƒ, called the Mittag-Leffler expansion, is convergent in a larger set than the Taylor series expansion of ƒ at a. Indeed, the largest open set on which the latter series is convergent is a disk centered at a and contained within the Mittag-Leffler star of ƒ at a