Leaching (chemistry)
Leaching is the process of a solute becoming detached or extracted from its carrier substance by way of a solvent.
Leaching is a naturally occurring process which scientists have adapted for a variety of applications with a variety of methods. Specific extraction methods depend on the soluble characteristics relative to the sorbent material such as concentration, distribution, nature, and size. Leaching can occur naturally seen from plant substances, solute leaching in soil, and in the decomposition of organic materials. Leaching can also be applied affectedly to enhance water quality and contaminant removal, as well as for disposal of hazardous waste products such as fly ash, or rare earth elements. Understanding leaching characteristics is important in preventing or encouraging the leaching process and preparing for it in the case where it is inevitable.
In an ideal leaching equilibrium stage, all the solute is dissolved by the solvent, leaving the carrier of the solute unchanged. The process of leaching however is not always ideal, and can be quite complex to understand and replicate, and often different methodologies will produce different results.
Leaching processes
There are many types of leaching scenarios, therefore the extent of this topic is vast. In general however, the three substances can be described as:- a carrier, substance A,
- a solute, substance B,
- and a solvent, substance C.
- Particle size
- Solvent
- Temperature
- Agitation
- Surface area
- Homogeneity of the carrier and solute
- Microorganism activity
- Mineralogy
- Intermediate products
- Crystal structure
- Dissolution of surficial solute by solvent
- Diffusion of inner-solute through the pores of the carrier to reach the solvent
- Transfer of dissolved solute out of the system
Leaching processes for biological substances
Bioleaching is a term that describes the removal of metal cations from insoluble ores by biological oxidation and complexation processes. This process is done in most part to extract copper, cobalt, nickel, zinc, and uranium from insoluble sulfides or oxides. Bioleaching processes can also be used in the re-use of fly ash by recovering aluminum using sulfuric acid.
Leaching processes for fly ash
Coal fly ash is a product that experiences heavy amounts of leaching during disposal. Though the re-use of fly ash in other materials such as concrete and bricks is encouraged, still much of it in the United States is disposed of in holding ponds, lagoons, landfills, and slag heaps. These disposal sites all contain water where washing effects can cause leaching of many different major elements, depending on the type of fly ash and the location where it originated. The leaching of fly ash is only concerning if the fly ash has not been disposed of properly, such as in the case of the Kingston Fossil Plant in Roane County, Tennessee. The Tennessee Valley Authority Kingston Fossil Plant structural failure lead to massive destruction throughout the area and serious levels of contamination downstream to both Emory River and Clinch River.Leaching processes in soil
Leaching in soil is highly dependent on the characteristics of the soil, which makes modeling efforts difficult. Most leaching comes from infiltration of water, a washing effect much like that described for the leaching process of biological substances. The leaching is typically described by solute transport models, such as Darcy's Law, mass flow expressions, and diffusion-dispersion understandings. Leaching is controlled largely by the hydraulic conductivity of the soil, which is dependent on particle size and relative density that the soil has been consolidated to via stress. Diffusion is controlled by other factors such as pore size and soil skeleton, tortuosity of flow path, and distribution of the solvent and solutes.Leaching mechanisms
Due to the assortment of leaching processes there are many variations in the data to be collected through laboratory methods and modeling, making it hard to interpret the data itself. Not only is the specified leaching process important, but also the focus of the experimentation itself. For instance, the focus could be directed toward mechanisms causing leaching, mineralogy as a group or individually, or the solvent that causes leaching. Most tests are done by evaluating mass loss due to a reagent, heat, or simply washing with water. A summary of various leaching processes and their respective laboratory tests can be viewed in the following table:Leaching Process | Laboratory Tests |
Waste Leachate Removal | Batch Test or Column Test |
Leaching from Plants | t-test or permutation test |
Mobilization of Metal Cations | Bioleaching |
Leaching Fly Ash | Evaporation from Disposal Pond |
Cellular Extraction | Light Petroleum Fractions, Trichlorethylene Solvent, or Acetone/Ether Solvent |
Coarse Solids Leaching | Batch Plant |
Fine Solids Leaching | Agitation by Mechanical Stirrer or Compressed Air |
Environmentally friendly leaching
Some recent work has been done to see if organic acids can be used to leach lithium and cobalt from spent batteries with some success. Experiments performed with varying temperatures and concentrations of malic acid show that the optimal conditions are 2.0 m/L of organic acid at a temperature of 90 °C. The reaction had an overall efficiency exceeding 90% with no harmful byproducts.The same analysis with citric acid showed similar results with an optimal temperature and concentration of 90 °C and 1.5 molar solution of citric acid.