Fiber-reinforced concrete


Fiber-reinforced concrete is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.

Historical perspective

The concept of using fibers as reinforcement is not new. Fibers have been used as reinforcement since ancient times. Historically, horsehair was used in mortar and straw in mudbricks. In the 1900s, asbestos fibers were used in concrete. In the 1950s, the concept of composite materials came into being and fiber-reinforced concrete was one of the topics of interest. Once the health risks associated with asbestos were discovered, there was a need to find a replacement for the substance in concrete and other building materials. By the 1960s, steel, glass, and synthetic fibers were used in concrete. Research into new fiber-reinforced concretes continues today.

Effect of fibers in concrete

Fibers are usually used in concrete to control cracking due to plastic shrinkage and to drying shrinkage. They also reduce the permeability of concrete and thus reduce bleeding of water. Some types of fibers produce greater impact–, abrasion–, and shatter–resistance in concrete. Larger steel or synthetic fibers can replace rebar or steel completely in certain situations. Fiber reinforced concrete has all but completely replaced bar in underground construction industry such as tunnel segments where almost all tunnel linings are fiber reinforced in lieu of using rebar. Indeed, some fibers actually reduce the compressive strength of concrete.
The amount of fibers added to a concrete mix is expressed as a percentage of the total volume of the composite, termed "volume fraction". Vf typically ranges from 0.1 to 3%. The aspect ratio is calculated by dividing fiber length by its diameter. Fibers with a non-circular cross section use an equivalent diameter for the calculation of aspect ratio. If the fiber's modulus of elasticity is higher than the matrix, they help to carry the load by increasing the tensile strength of the material. Increasing the aspect ratio of the fiber usually segments the flexural strength and toughness of the matrix. However, fibers that are too long tend to "ball" in the mix and create workability problems.
Some research in the late 2000s indicated that using fibers in concrete has limited effect on the impact resistance of the materials. This finding is very important since traditionally, people think that ductility increases when concrete is reinforced with fibers. The results also indicated that the use of micro fibers offers better impact resistance to that of longer fibers.
The High Speed 1 tunnel linings incorporated concrete containing 1 kg/m³ of polypropylene fibers, of diameter 18 & 32 μm, giving the benefits noted below.

Benefits

Glass fibers can:
Polypropylene and nylon fibers can:
Steel fibers can:
Blends of both steel and polymeric fibers are often used in construction projects in order to combine the benefits of both products; structural improvements provided by steel fibers and the resistance to explosive spalling and plastic shrinkage improvements provided by polymeric fibers.
In certain specific circumstances, steel fiber or macro synthetic fibers can entirely replace traditional steel reinforcement bar in reinforced concrete. This is most common in industrial flooring but also in some other precasting applications. Typically, these are corroborated with laboratory testing to confirm that performance requirements are met. Care should be taken to ensure that local design code requirements are also met, which may impose minimum quantities of steel reinforcement within the concrete. There are increasing numbers of tunnelling projects using precast lining segments reinforced only with steel fibers.
Micro-Rebar has also been recently tested and approved to replace traditional reinforcement in vertical walls designed in accordance with ACI 318 Chapter 14.

Some developments

An FRC sub-category named High-Performance Fiber Reinforced Concrete claims 500 times more resistance to cracking and 40 percent lighter than traditional concrete. HPFRC claims it can sustain strain-hardening up to several percent strain, resulting in a material ductility of at least two orders of magnitude higher when compared to normal concrete or standard fiber-reinforced concrete. HPFRC also claims a unique cracking behavior. When loaded to beyond the elastic range, HPFRC maintains crack width to below 100 µm, even when deformed to several percent tensile strains. Field results with HPFRC and The Michigan Department of Transportation resulted in early-age cracking.
Recent studies performed on a high-performance fiber-reinforced concrete in a bridge deck found that adding fibers provided residual strength and controlled cracking. There were fewer and narrower cracks in the FRC even though the FRC had more shrinkage than the control. Residual strength is directly proportional to the fiber content.
Some studies were performed using waste carpet fibers in concrete as an environmentally friendly use of recycled carpet waste. A carpet typically consists of two layers of backing, joined by CaCO3 filled styrene-butadiene latex rubber, and face fibers. Such nylon and polypropylene fibers can be used for concrete reinforcement. Other ideas are emerging to use recycled materials as fibers: recycled Polyethylene terephthalate fiber, for example.

Standards