A star is here defined as a set of 2s vectors A = ±a1,..., ±as issuing from a particular origin in a Euclidean space of dimension n ≤ s. A star is eutactic if the ai are the projections onto n dimensions of a set of mutually perpendicular equal vectors b1,..., bs issuing from a particular origin in Euclidean s-dimensional space. The configuration of 2s vectors in the s-dimensional space B = ±b1, ... , ±bs is known as a cross. Given these definitions, a eutactic star is, concisely, a star produced by the orthogonalprojection of a cross. An equivalent definition, first mentioned by Schläfli, stipulates that a star is eutactic if a constantζ exists such that for every vectorv. The existence of such a constant requires that the sum of the squares of the orthogonal projections of A on a line be equal in all directions. In general, A normalised eutactic star is a projected cross composed ofunit vectors. Eutactic stars are often considered in n = 3 dimensions because of their connection with the study of regular polyhedra.
[|Hadwiger's principal theorem]
Let T be the symmetriclinear transformation defined for vectors x by where the aj form any collection of s vectors in the n-dimensional Euclidean space. Hadwiger's principal theorem states that the vectors ±a1,..., ±as form a eutactic star if and only if there is a constant ζ such that Tx = ζx for every x. The vectors form a normalized eutactic star precisely whenT is the identity operator – when ζ = 1. Equivalently, the star is normalized eutactic if and only if the matrixA = , whose columns are the vectors ak, has orthonormal rows. A proof may be given in one direction by completing the rows of this matrix to an orthonormal basis of, and in the other by orthogonally projecting onto the n-dimensional subspace spanned by the first nCartesian coordinate vectors. Hadwiger's theorem implies the equivalence of Schläfli's stipulation and the geometrical definition of a eutactic star, by the polarization identity. Furthermore, both Schläfli's identity and Hadwiger's theorem give the same value of the constant ζ.
Applications
Eutactic stars are useful largely because of their relationship with the geometry of polytopes and groups of orthogonal transformations. Schläfli showed early on that the vectors from the center of any regular polytope to its vertices form a eutactic star. Brauer and Coxeter proved the following generalization: An irreducible group here means a group that does not leave any nontrivial proper subspace invariant. Since the set theoretic union of two eutactic stars is itself eutactic, it can be concluded that, in general: Eutactic stars may be used to validate the eutaxy of any form in general. According to H. S. M. Coxeter: "A form is eutactic if and only if its minimal vectors are parallel to the vectors of a eutactic star."