Engineered cementitious composite


Engineered Cementitious Composite, also called Strain Hardening Cement-based Composites or more popularly as bendable concrete, is an easily molded mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers. Unlike regular concrete, ECC has a strain capacity in the range of 3–7%, compared to 0.01% for ordinary portland cement paste, mortar or concrete. ECC therefore acts more like a ductile metal material rather than a brittle glass material, leading to a wide variety of applications.

Development

ECC, unlike common fiber reinforced concrete, is a family of micromechanically designed materials. As long as a cementitious material is designed/developed based on micromechanics and fracture mechanics theory to feature large tensile ductility, it can be called an ECC. Therefore, ECC is not a fixed material design, but a broad range of topics under different stages of research, development, and implementations. The ECC material family is expanding. The development of an individual mix design of ECC requires special efforts by systematically engineering of the material at nano-, micro-, macro- and composite scales.
ECC looks similar to ordinary Portland cement-based concrete, except that it can deform under strain. A number of research groups are developing ECC science, including those at the University of Michigan, University of California, Irvine, Delft University of Technology, the University of Tokyo, the Czech Technical University, University of British Columbia, and Stanford University. Traditional concrete's lack of durability and failure under strain, both stemming from brittle behavior, have been a pushing factor in the development of ECC.

Properties

ECC has a variety of unique properties, including tensile properties superior to other fiber-reinforced composites, ease of processing on par with conventional cement, the use of only a small volume fraction of fibers, tight crack width, and a lack of anisotropically weak planes. These properties are due largely to the interaction between the fibers and cementing matrix, which can be custom-tailored through micromechanics design. Essentially, the fibers create many microcracks with a very specific width, rather than a few very large cracks This allows ECC to deform without catastrophic failure.
This microcracking behavior leads to superior corrosion resistance as well as to self-healing. In the presence of water unreacted cement particles recently exposed due to cracking hydrate and form a number of products that expand and fill in the crack. These products appear as a white ‘scar’ material filling in the crack. This self-healing behavior not only seals the crack to prevent transport of fluids, but mechanical properties are regained. This self-healing has been observed in a variety of conventional cement and concretes; however, above a certain crack width self healing becomes less effective. It is the tightly controlled crack widths seen in ECC that ensure all cracks thoroughly heal when exposed to the natural environment.
When combined with a more conductive material, all cement materials can increase and be used for damage-sensing. This is essentially based on the fact that conductivity will change as damage occurs; the addition of conductive material is meant to raise the conductivity to a level where such changes will be easily identified. Though not a material property of ECC itself, semi-conductive ECC for damage-sensing are being developed.

Types

There are a number of different varieties of ECC, including:
ECC have found use in a number of large-scale applications in Japan, Korea, Switzerland, Australia and the U.S.. These include:
Note: FRC=Fiber-Reinforced Cement. HPFRCC=High-Performance Fiber Reinforced Cementitious Composites