Emergency communication system
An emergency communication system is any system that is organized for the primary purpose of supporting one-way and two-way communication of emergency information between both individuals and groups of individuals. These systems are commonly designed to convey information over multiple types of devices, from signal lights to text messaging to live, streaming video, forming a unified communication system intended to optimize communications during emergencies. Contrary to emergency notification systems, which generally deliver emergency information in one direction, emergency communication systems are typically capable of both initiating and receiving information between multiple parties. These systems are often made up of both input devices, sensors, and output/communication devices. Therefore, the origination of information can occur from a variety of sources and locations, from which the system will disseminate that information to one or more target audiences.
Emergency communication vs. notification
An emergency notification system refers to a collection of methods that facilitate the one-way dissemination or broadcast of messages to one or many groups of people with the details of an occurring or pending emergency situation. Mass automated dialing services such as Cell Broadcast, Reverse 911, as well as common siren systems that are used to alert for tornadoes, tsunamis, air-raid, and other such incidents, are examples of emergency notification systems.Emergency communication systems often provide or integrate those same notification services but will also include two-way communication—typically to facilitate communications between emergency communications staff, affected people, and first responders. Another distinguishing attribute of the term "communication" may be that it implies the ability to provide detailed and meaningful information about an evolving emergency and actions that might be taken; whereas "notification" denotes a relatively more simplistic one-time conveyance of the existence and general nature of an emergency.
Alternate and related terms
Since there are a collection of related systems used in diverse settings in varying ways, there are numerous terms that are used interchangeably among the entities that use or have a need for emergency communication systems. In most instances, though, these are all used to refer to the same or substantially similar concepts. For example, use of the terms “emergency communications” and “disaster communications” definitively refer to the same concept, with the only potential difference lying in the connotation or emotional meaning.- Emergency Notification
- Emergency Notification System
- Emergency Notification Service
- Emergency Communications
- Emergency Communications System
- Emergency Communications Service
- Emergency Response Software
- Unified Emergency Communications
- Emergency Warning System
- Emergency Management System
- Emergency Management Software
- Alerting System
- Emergency Alert
- Emergency Alert System
- Emergency Alerting System
- Notification System
- Unified Communication System
- Public Mass Notification
- Public Notification System
- Mass Notification
- Mass Notification System
- Network-centric emergency notification
- Network-Centric Emergency Communication
- Unified Emergency Communication System
- Disaster Communication System
- Emergency Public Warning System
- Public Address System
- Audiovisual Public Address System
- Intercom System
- Public Safety System
- Public Security System
Need and limitations
Depending on the location, time, and nature of the emergency, a large variety of limitations could present themselves when it comes to communicating details of an emergency and any resultant actions that may need to be taken to protect life and property. For example, an audio public address system might be rendered ineffective if the emergency happens to be an explosive event which renders most or all of those affected deaf. Another common example might be the limitation of a fire alarm's siren component in a deaf school. Yet another example of a limitation could be the overloading of public services, resulting in the delay of vital SMS messages until they are too late, such as occurred during the Boston Marathon bombing.
Attributes
Timeliness and speed of delivery
Emergency systems require timely and quick dissemination in order to mitigate damage or loss of life. During the Virginia Tech massacre, about two hours had passed before the first communication was sent to staff and students. By that time, the gunman had already entered and secured a building in which he was shortly to begin his attack. It wasn't until about 20 minutes after the shootings began that a loudspeaker announcement was made for people to take cover.Ease of use
During a crisis, the people who use an ECS need to quickly and easily launch their notifications and they need to be able to do so in a way that securely provides them with confidence and an intuitive, familiar and easy-to-use interface that can be accessed from any location. An emergency communication system that's designed for non-technical users will ensure successful administration and usage; and during some life-threatening emergency situations, campus administrators must be able to react quickly and trigger the alert system swiftly. Yet emergency alert is probably among the least used and least familiar processes. Ease-of-use therefore is critical to the effectiveness of an emergency communication system.However, in order to support a robust and capable emergency communication ability, this ease of use should not preclude the use of a complex, technologically advanced system. A sufficiently advanced system is required to coordinate multiple components to act in concert, to initiate and propagate emergency communications in any manner of ways. A distinguishing factor is when such a system includes these advanced capabilities, while still being easy for the user to operate. This is important not only for effective emergency communication, but also for an organization to realize the most return on investment, as well as the user being familiar enough with its operation as to effectively operate it under stressful emergency situations, such as in an earthquake or tsunami.
Providing instructions
A clearly needed attribute of any modern emergency communication system is the ability to not only provide notification of an emergency, but to also provide clear and actionable instructions for how to respond to an emergency. In a study by the Rehabilitation Engineering Research Center for Wireless Technologies, it was revealed that regardless of the initial form of notification, a secondary form was necessary before action would be taken. This supports the important observation that providing clear and concise instructions may reduce dependency on such secondary verification; and thus, providing instructions may save lives in an urgent emergency situation.Specific audiences or recipients
Emergencies often require delivery of different versions of the same communication at the same time. For example, in an armed hostage-taking incident, occupants of a building may need to receive instructions to lock and barricade the door until further notice, while first responders to the incident need to be aware of the lockdown instructions and be provided more specific details of the hostage-taking event to inform their actions.Using the hostage-taking example, some of the more modern emergency communication systems state the ability to deliver a single message that provides full details to first responders, while filtering that same message to provide more limited instructions to different groups. For example, a specific message could be sent to people in a certain area, in a specific building, or even in a specific department. By using a single message that segregates information between types of users, fewer messages have to be created and sent, which can also save time.
Multiple communication paths/redundancy
There should be multiple means of delivering emergency information so that if one fails, others may get through. Also, according to the Partnership for Public Warning, research shows clearly that more than one channel of communication will be consulted by people at risk in order to confirm the need for action. The public expects to be contacted in a variety of ways. As evidenced by various historical and recent events, besides phone calls and emails, citizens also expect to be able to use and be reached via text messaging, and fax. In one exemplary incident, the 2012 Wisconsin Sikh temple shooting, barricaded victims relied on sending text messages for help, in addition to traditional phone calls. In addition, the public may look to social media as another vehicle to receive messages and check in on updates.Additionally, the Partnership for Public Warning states, “A single warning is frequently insufficient to move people to action, especially if it cannot be confirmed by direct observation. For most people the first warning received captures their attention and triggers a search for corroboration, but cannot be relied on to elicit the desired behavior. Scientific research supports the common-sense observation that people are disinclined to risk being fooled by a single alarm that might prove false or accidental. Effective warning requires the coordinated use of multiple channels of communication.”
Interoperability
To support these attributes, a "unified" emergency communication system should be able to connect to and communicate with other related systems, hence the term. According to the Partnership for Public Warning, a fundamental problem is the lack of technical and procedural interoperability among warning originators, system providers, delivery systems, and warning recipients. Originators of warnings must undertake expensive, redundant tasks using multiple, dissimilar tools and techniques to take full advantage of today's warning systems.Also, there are multiple ways that an emergency communication system might obtain an original warning. One example of this might be the case of a building's fire control system dispatching a notice that a smoke detector has activated. A properly designed emergency communication system should be able to receive that notice and process it into a message that the building's occupants can understand and take action on in order to save life and property. Another example might be of the National Weather Service sending an EAS severe weather warning. Modern emergency communication systems include the capability to subscribe to such source feeds, so that those responsible for disseminating the message have the most up-to-date information.
The ability to interoperate should also consider the need to be both forward and backward compatible with older and yet-to-be-conceived technologies. Introduction of a system that cannot interoperate with previously deployed equipment creates potentially serious barriers to effective operation.
Affordability
Because of budgetary constraints, for many organizations, the affordability of an emergency communication system can be just as important as the system's capabilities and effectiveness. The purchase and installation of enough emergency communication devices to provide multiple methods of communication to many locations within an organization in order to deliver location-specific instructions and for redundancy can be very expensive. Many organizations, therefore, are looking for more economical emergency communication solutions. Overall, the more affordable it is to procure, install, and maintain an emergency communication system, the more prolific such systems may become, and the more prolific these systems are, the more likely it is that these systems will be available to aid in times of emergency in more locations. According to Federal Signal, beyond supporting emergency response, today's mass notification systems have proven to be a valuable asset for everyday, non-emergency, intra- and inter-plant communications. This has become particularly evident in the deployment of interoperable, multi-device communications technology that not only enhances overall plant communications, but provides a host of useful software-based management and administrative tools. Additionally, many of the more traditional approaches to mass notification, i.e., public address and intercom systems, e-mail, and voice and text messaging, provide everyday functionality for plant communications and process control that represents attractive potential for return on investment.Product versus service
An emergency communication system may be composed of a product and its associated hardware and software, as owned by the entity using it, or as a service owned and provided by a third-party. Each have their own advantages and disadvantages; however, despite perception otherwise, services have some major inherent problems when it comes to effective emergency communications. For instance, using SMS as one example, due to the architecture of cellular networks, text messaging services would not be able to handle a large volume of communications in a short period of time, making this particular type of service a potentially ineffective emergency communication method.Premises based versus non-premises based
Premises based emergency communication systems are those which primarily or wholly exist in the same geographical or structural area as it serves, while non-premises based emergency communication systems are those which exist in a different geographical or structural area. There are advantages and disadvantages of each. Often, non-premises based systems are slower than those that are premises-based, because at the very least, the different locations need to be connected via data networks, which may be susceptible to disruption or delay.History
With the growth of populations and the evolution of technology, the methods for communicating emergency situations have also changed, as has the definition for what might constitute an “emergency.” These methods would also very likely depend on a particular region's culture and location, as well.Early systems
In America's formative years, common means of emergency communications may have mostly consisted of church bells being rung or messengers on horseback. Later, as technology developed, the telegraph became a nearly instant method of communicating. From there, radio communications, telephones and sirens became commonplace.After the surprise attack on Pearl Harbor, by the Japanese in 1941, Civil Defense sirens became popular and resulted in their widespread use in military bases and towns across America. A particular weakness of these systems is that they largely lack the ability to inform people what they should do.
Fire alarm systems were first developed around the late 1800s and other related life-safety detectors associated with those systems were developed around the early 1900s. These constitute the first automated systems used in public and private buildings that are in normal and widespread use today. These systems, although originally designed for fire, have also been used for many other types of emergencies, sometimes effectively and sometimes not. For instance, if a fire alarm has been activated during an active shooter incident, the typical reaction to evacuate may not be the safest course of action; instead, a shelter in place action may be better. As an example, during the 2012 Aurora, Colorado shooting, a mass shooting event that happened at the Century 16 movie theater in Aurora, Colorado, the assailant began targeting victims as they attempted to exit the theater; in which case, it would have been unwise to heed the fire alarm, that was sounding, and evacuate.
Modern systems
Today, modern communication tools such as smartphones, flat-panel digital signage, GPS, and text-to-speech are changing the way in which people are notified about emergencies. Of added value, with these more modern tools, is the ability to provide more specific instructions. Now, instead of merely notifying people about an emergency, it is possible to provide specific instructions on what to do in order to mitigate the effects of an emergency. Furthermore, those instructions might even be customized for those peoples' specific and unique circumstances. For example, smart-phones may have geo-location abilities that would allow a map to be shown of safe locations, relative to those devices' specific users — all with a singular alert being sent as the source of those warnings. Modern implementations directed at personal devices allow for acknowledgement of receipt. This way emergency services can gain insight on message reception and tally users that have reached safety.Broadcast technologies
Perhaps the oldest or most basic forms of public communication are staples such as over-the-air television, sirens, and radio. More modern components might include lights and Giant Voice systems. These all have one thing in common: they broadcast indiscriminately to anyone who has the means to receive the message; whether they are simply in the immediate area or require some sort of receiving device.Broadcast technologies use point-to-point communications methodology and may either require infrastructure or not. Examples of broadcast technologies requiring infrastructure might include such things as Reverse 911 and broadcast-affiliate networks.
Infrastructure-independent
Broadcast technologies that do not depend on man-made infrastructure to convey communication may be least susceptible to disruption during disasters and emergencies. Some examples of infrastructure-independent technologies are:- Short-wave Radio
- Two-way Radio
- Weather Radio
- Internet Based Communication
Infrastructure-dependent
Broadcast technologies that depend on man-made infrastructure to convey communication are susceptible to disruption if any part of that infrastructure is overloaded, damaged or otherwise destroyed. Some examples of infrastructure-dependent technologies are:- Audio Public Address Systems
- WMT Public Address Systems
- L.E.D. Electronic Signs
- Combination Audio/Visual Public Address Devices
- Digital Signage
- Giant Voice Systems
Communication devices
Public and shared devices
Public communication refers to the conveyance of messages to people, in such a way that anyone may receive the communication at nearly the same time as anyone else, typically using a common device. The most common way of facilitating public communications is by using devices that are incorporated into some public venue, such as public-address systems or digital signage. Using public devices for the purpose of public warning empowers people at risk to take actions to reduce losses from natural hazards, accidents, and acts of terrorism.Private devices
"Private" means the delivery of messages to a specific individual, in a private manner or in such a way that even those nearby may not get the message. Common ways of facilitating private communications involve devices such as telephones or electronic mail.Mobile phones
Line-based phones
SMS/Text messaging
Social Media - Syndicated Emergency Communications
- Twitter is an online social networking and micro-blogging service using SMS text messaging. While it wasn't intended or designed for high performance communication, the idea that it could be used for emergency communication certainly was not lost on the originators, who knew that the service could have wide-reaching effects early on, when the San-Francisco, California-based company used it to communicate during earthquakes.
- Facebook may have potential for emergency communication, as it has a large involved user-base.
Electronic mail
Emergency-oriented instant messengers and computer screen pop-ups
- Prevents the user from killing the program, which would prevent the delivery of emergency messages.
- Delivers emergency messages in a large font that can be easily read a substantial distance from the screen.
- Scrolls the message across the screen to attract attention and to ensure that the entire message can be displayed without any user effort. Scrolling the message may also allow for the use of a large font and readability from a distance.
- Non-chat-oriented, ensuring that the software will be set up for a large scrolling font.
- Supports many priorities for messages, ensuring that emergency messages are not lost in the crowd of common messages that may appear in the computer screen.
- Supports a non-counterfeit-able signature as part of the message to insure the recipient that the communication can be trusted and that it comes from a known authority.
- Supports both one-to-one and one to many communication.
- Emergency-oriented instant messenger requires that the sender of the message have the ability to update messages that are appearing on users PC screens without the recipient needing to take any action.
- The sender of an emergency message must have the ability to terminate the display a message from display on all of the screens that display the message by closing the window in which it is displayed.
- Supports communications to arbitrary groups of PC, by lists of PC, by lists of users, and by IP address ranges. Each of these addressability options are optimal in specific circumstances and reduce the labor of administration.
- If the PC is not connected to the network, it will not display the message. This means that the network is another potential point of failure.
- If the PC is logged off or if the screen saver is active and requires a password to access the screen, then conventional knowledge posits that it will prevent the delivery of the emergency message.
Case studies, failures and successes