EXPOSE


EXPOSE is a multi-user facility mounted outside the International Space Station dedicated to astrobiology. EXPOSE was developed by the European Space Agency for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.
The results will contribute to our understanding of photobiological processes in simulated radiation climates of planets, as well as studies of the probabilities and limitations for life to be distributed beyond its planet of origin. EXPOSE data support long-term in situ studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches. Some EXPOSE experiments investigated to what extent particular terrestrial organisms are able to cope with extraterrestrial environmental conditions. Others tested how organic molecules react when subjected for a prolonged period of time to unfiltered solar light.

Objectives

EXPOSE has several objectives, specific to each experiments, but all linked to the astrobiology domain. Their collective objective is to better understand the nature and evolution of organic matter present in extraterrestrial environments and their potential implications in astrobiology. These experiments mostly study molecules of cometary interest in order to understand the results of the Rosetta
mission, the chemistry of Titan, or the organic chemistry of the Martian environment.

Relevance

With the experiments onboard of the EXPOSE facilities, various aspects of astrobiology were investigated that could not be sufficiently approached by use of laboratory facilities on ground. The chemical set of experiments is designed to reach a better understanding of the role of interstellar, cometary and planetary chemistry in the origin of life. Comets and meteorites are interpreted as exogenous sources of prebiotic molecules on the early Earth. All data achieved from the astrobiological experiments on both EXPOSE missions will add to the understanding of the origin and evolution of life on Earth and on the possibility of its distribution in space or origin elsewhere.
Data obtained from the studies on complex organics of cometary interest will support the interpretation of in-situ data obtained from the Rosetta mission after landing on Comet 67P/Churyumov-Gerasimenko in 2014, and samples analyzed by the Curiosity and ExoMars rovers on Mars. Finally the chemical experiments will contribute to the understanding of the chemical processes on Saturn's moon Titan and possible analogies to the prebiotic chemistry on the early Earth.
The biology experiments used the full extraterrestrial spectrum of solar UV radiation and suitable cut-off filters to study both, the role of the ozone layer in protecting our biosphere and the likelihood of resistant terrestrial microorganisms to survive in outer space. The latter studies will provide experimental data to the lithopanspermia hypothesis, and they will provide basic data to planetary protection issues. To get better insight into the habitability of Mars, one set of samples was exposed to simulated Martian conditions, with and without a protective cover of simulated Martian soil. The biological test samples selected are hardy representatives of various branches of life.

General mission description

There were three EXPOSE experiments completed between 2008 and 2015: EXPOSE-E, EXPOSE-R and EXPOSE-R2.
The EXPOSE-E was launched on February 7, 2008 on board the Space Shuttle Atlantis and was mounted on the ISS European module Columbus to the European Technology Exposure Facility. EXPOSE-R was launched to the ISS on November 26, 2008 from Baikonur in Kazakhstan on board of a Progress capsule and was mounted on the ISS Russian module Zevzda. EXPOSE-R2 was launched
EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation or to simulated Martian surface conditions. The different experiments consisted in exposing solid molecules, gas mixtures or biological samples to the solar ultraviolet radiation, cosmic rays, vacuum and temperature fluctuations of outer space as the ISS repeatedly passed between areas of direct sunlight and the cold darkness of Earth's shadow.
At the end of the exposition period, EXPOSE-E was brought back to the ground in September 2009 as part of the Space Shuttle Discovery mission STS-128. EXPOSE-R was brought back in 2011 by a Soyuz spacecraft. From the landing site in Kazakhstan, the trays were returned via Moscow and distributed to scientists for further analysis in their laboratories.
EXPOSE-R2 was launched on 24 July 2014, exposure was finished on April 2015, and was returned to Earth in early 2016 where it is still undergoing analyses.

EXPOSE-E

The EXPOSE-E experiments are:
;PROCESS
The search for organic molecules at the surface of Mars is a top priority of Mars exploration space missions. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the Martian environment. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Their half-lives were between 50 and 150 h for Martian surface conditions.
To understand the chemical behavior of organic molecules in the space environment, amino acids and a dipeptide in pure form and embedded in meteorite powder were exposed to space conditions for 18 months; the samples were returned to Earth and analyzed in the laboratory for reactions caused by solar UV and cosmic radiation. The results show that resistance to irradiation is a function of the chemical nature of the exposed molecules and the wavelengths of the UV light. The most altered compounds were the dipeptide, aspartic acid, and aminobutyric acid. The most resistant were alanine, valine, glycine, and aminoisobutyric acid. The results also demonstrate the protective effect of meteorite powder, which reemphasizes the importance of exogenic contribution to the inventory of prebiotic organics on early Earth.
;ADAPT
Bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit and simulated Martian surface conditions for 559 days. It was clearly shown that solar extraterrestrial UV radiation as well as the Martian UV spectrum was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived, and 100% survived in simulated Martian conditions, compared to the laboratory controls.
Halococcus dombrowskii and a naturally UV-adapted phototrophic community were two other targets of the experiment. For ADAPT-II, no counting from the space station has been published, but preliminary ground experiments have extablished some tolerance levels. The results for ADAPT-III has been published. Many dyes used by the microbials are bleached by the UV rays, and quite a few species used in the dark control groups died. Chroococcidiopsis was the one to survive every group. Chlorella, Gloeocapsa, and Geminicoccus roseus were able to survide a lower UV level.
;PROTECT
molecules of living organisms in different ways. In one common damage event, adjacent thymine bases bond with each other, instead of across the "ladder". This "thymine dimer" makes a bulge, and the distorted DNA molecule does not function properly.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space. It was clearly shown that solar extraterrestrial UV radiation as well as the Martian UV spectrum was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.
The mutagenic efficiency of space was also studied in spores of Bacillus subtilis 168. The data show the unique mutagenic power of space and Martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars. Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated Martian conditions.
A comparative protein analysis of Bacillus pumilus SAFR-032 spores indicated that proteins conferring resistant traits were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated ultraviolet-C resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.
;LiFE

After 1.5 years in space, samples were retrieved, rehydrated and spread on different culture media. The only two organisms able to grow were isolated from a sample exposed to simulated Mars conditions beneath a 0.1% T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. The two surviving organisms were identified as
Stichococcus sp. and Acarospora sp.. Among other fungal spores tested were Cryomyces antarcticus and Cryomyces minteri, and although 60% of the cells' DNA studied remained intact after the Mars-like conditions, less than 10% of the fungi were able to proliferate and form colonies after their return to Earth. According to the researchers, the studies provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.
Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. A 1.5 years exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms. Selected organisms are known to cope with the environmental extremes of their natural habitats. It was found that some —but not all— of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, the data provide first evidence of the differential hardiness of cryptoendolithic communities in space.
;SEEDS
The plausibility that life was imported to Earth from elsewhere was tested by subjecting plant seeds to 1.5 years of exposure to solar UV, solar and galactic cosmic radiation, temperature fluctuations, and space vacuum outside the International Space Station. Of the 2100 exposed wild-type
Arabidopsis thaliana and Nicotiana tabacum'' seeds, 23% produced viable plants after being returned to Earth. Germination was delayed in seeds shielded from solar light, yet full survival was attained, which indicates that longer space travel would be possible for seeds embedded in an opaque matrix. The team conclude that a naked, seed-like entity could have survived exposure to solar UV radiation during a hypothetical transfer from Mars to Earth, and even if seeds do not survive, components might survive transfer over cosmic distances.
;Dosis, Dobis
As a consequence of the high shielding by the nearby ISS, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
;R3D
- gamma rays are represented by wavy lines, charged particles and neutrons by straight lines. The small circles show where ionization processes occur.
R3D measured ionizing and non-ionizing radiation as well as cosmic radiation reaching the biological samples located on the EXPOSE-E. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m−2 for PAR, 269.03 MJ m−2 for UVA, 45.73 MJ m−2 for UVB, or 18.28 MJ m−2 for UVC. Registered sunshine duration during the mission was about 152 days. The surface of EXPOSE was most likely turned away from the Sun for considerably longer time.
The highest daily averaged absorbed dose rate of 426 μGy per day came from the 'South Atlantic Anomaly' region of the inner radiation belt; galactic cosmic rays delivered a daily absorbed dose rate of 91.1 μGy per day, and the outer radiation belt source delivered 8.6 μGy per day.

EXPOSE-R

Expose-R was mounted by Russian cosmonaut's extravehicular activity on March 11, 2009 and the exposure to outer space conditions continued for 682 days until January 21, 2011, when it was brought back to Earth by the last Discovery Shuttle flight STS 133 on March 9, 2011. EXPOSE-R was equipped with three trays housing eight experiments and 3 radiation dosimeters. Each tray was loaded with a variety of biological organisms including plant seeds and spores of bacteria, fungi and ferns that were exposed to the harsh space environment for about one and a half years. The ROSE group of experiments are under the coordination of the German Aerospace Center and has been composed of scientists from different European countries, from USA and from Japan. In its 8 experiments of biological and chemical content, more than 1200 individual samples were exposed to solar ultraviolet radiations, vacuum, cosmic rays or extreme temperature variations. In their different experiments, the involved scientists are studying the question of life's origin on Earth and the results of their experiments are contributing to different aspects of the evolution and distribution of life in the Universe.
The EXPOSE-R experiments are:
Pictures acquired during the spacewalk #27 on the final day of exposure indicated that many of the 75 small windows had turned brown. The brown film was clearly a deposit which had precipitated inside the windows during the spaceflight. The appearance of the brown film turned out to depend on two prerequisites: solar irradiation and vacuum. As the brown film should have impacted the quantity and quality of solar light that reached the test samples, affecting the core of the scientific goals, an investigation was started to identify the properties and the root cause of the colour change. The brown film contained hydrocarbons, so an inventory was made of materials contained inside Expose-R that could possibly have delivered the contaminating volatiles.
The true chemical identity was not established, but their origin may have been substances added to adhesives, plastics and printed circuit boards.
Since not all the windows developed a contaminating brown film, some experiments were effectively exposed:
A third mission, called EXPOSE-R2, was launched on 24 July 2014 aboard the Russian Progress M-24M, carrying 46 species of bacteria, fungi and arthropods, in 758 different samples that were exposed to different conditions, under different filters, and for various time periods. It was attached on 18 August 2014 to the exterior of the ISS on the Russian module Zvezda, and exposure was finished on 3 February 2016, and were stored inside the ISS until their return to Earth on 18 June 2016. Two main experiments tested a desert strain of cyanobacterium called Chroococcidiopsis and Deinococcus geothermalis, as well as bacteria, yeast, archaea, algae, fungi, lichens and mosses, while the Biochip experiment will test affinity receptors to biomolecules. The organisms and organic compounds were exposed to partial and full space conditions for 12 to 18 months, and were returned to Earth in early 2016 for analyses.