Dunaliella salina was named by Emanoil C. Teodoresco of Bucharest, Romania after its original discoverer, Michel Felix Dunal, who first scientifically reported sighting the organism in salternevaporation ponds in Montpellier, France in 1838. He initially named the organism Haematococcus salinus and Protococcus. The organism was fully described as a new, separate genus simultaneously by Teodoresco and Clara Hamburger of Heidelberg, Germany in 1905. Teodoresco was the first to publish his work, so he is generally given credit for this categorization.
Morphology
Species in the genus Dunaliella are morphogically similar to Chlamydomonas reinhardtii with the main exception being that Dunaliella lack both a cell wall and a contractile vacuole. Dunaliella has two flagella of equal length and has a single cup-like chloroplast that often contains a central pyrenoid. The chloroplast can hold large amounts of β-carotene, which makes it appear orange-red. The β-carotene appears to protect the organism from long-term UV radiation that D. salina is exposed to in its typical environments. D. salina comes in various shapes and symmetries depending on the conditions in its current environment.
Reproduction and lifecycle
D. salina can reproduce asexually through division of motile vegetative cells and sexually through the fusion of two equal gametes into a singular zygote. Though D. salina can survive in salinic environments, Martinez et al. determined that sexual activity of D. salina significantly decreases in higher salt concentrations and is induced in lower salt concentrations. Sexual reproduction begins when two D. salina’s flagella touch leading to gamete fusion. The D. salina zygote is extraordinarily hardy and can survive exposure to fresh water and to dryness. After germination, the zygotes release up to 32 haploiddaughter cells.
Commercial production of β-carotene
From a first pilot plant for D. salina cultivation for β-carotene production established in the USSR in 1966, the commercial cultivation of D. salina for the production of β-carotene throughout the world is now one of the success stories of halophile biotechnology. Different technologies are used, from low-tech extensive cultivation in lagoons to intensive cultivation at high cell densities under carefully controlled conditions.
D. salina lacks a rigid cell wall, which makes the organism susceptible to osmotic pressure. Glycerol is used as a means by which to maintain both osmotic balance and enzymatic activity. D. salina preserves a high concentration of glycerol by maintaining a cell membrane with low permeability to glycerol and synthesizing large quantities of glycerol from starch as a response to high extracellularsalt concentration, which is why it tends to thrive in highly salinic environments. Attempts have been made to exploit the high concentrations of glycerol accumulated by D. salina as the basis for the commercial production of this compound. Although technically the production of glycerol from D. salina was shown to be possible, economic feasibility is low and no biotechnological operation exists to exploit the alga for glycerol production.