Delayed-choice quantum eraser
A delayed-choice quantum eraser experiment, first performed by Yoon-Ho Kim, R. Yu, S. P. Kulik, Y. H. Shih and Marlan O. Scully, and reported in early 1999, is an elaboration on the quantum eraser experiment that incorporates concepts considered in Wheeler's delayed-choice experiment. The experiment was designed to investigate peculiar consequences of the well-known double-slit experiment in quantum mechanics, as well as the consequences of quantum entanglement.
The delayed-choice quantum eraser experiment investigates a paradox. If a photon manifests itself as though it had come by a single path to the detector, then "common sense" says that it must have entered the double-slit device as a particle. If a photon manifests itself as though it had come by two indistinguishable paths, then it must have entered the double-slit device as a wave. If the experimental apparatus is changed while the photon is in mid‑flight, then the photon should reverse its original "decision" as to whether to be a wave or a particle. Wheeler pointed out that when these assumptions are applied to a device of interstellar dimensions, a last-minute decision made on Earth on how to observe a photon could alter a decision made millions or even billions of years ago.
While delayed-choice experiments have confirmed the seeming ability of measurements made on photons in the present to alter events occurring in the past, this requires a non-standard view of quantum mechanics. If a photon in flight is interpreted as being in a so-called "superposition of states", i.e. if it is interpreted as something that has the potentiality to manifest as a particle or wave, but during its time in flight is neither, then there is no time paradox. This is the standard view, and recent experiments have supported it.
Introduction
In the basic double-slit experiment, a beam of light is directed perpendicularly towards a wall pierced by two parallel slit apertures. If a detection screen is put on the other side of the double-slit wall, a pattern of light and dark fringes will be observed, a pattern that is called an interference pattern. Other atomic-scale entities such as electrons are found to exhibit the same behavior when fired toward a double slit. By decreasing the brightness of the source sufficiently, individual particles that form the interference pattern are detectable. The emergence of an interference pattern suggests that each particle passing through the slits interferes with itself, and that therefore in some sense the particles are going through both slits at once. This is an idea that contradicts our everyday experience of discrete objects.A well-known thought experiment, which played a vital role in the history of quantum mechanics, demonstrated that if particle detectors are positioned at the slits, showing through which slit a photon goes, the interference pattern will disappear. This which-way experiment illustrates the complementarity principle that photons can behave as either particles or waves, but not both at the same time.
However, technically feasible realizations of this experiment were not proposed until the 1970s.
Which-path information and the visibility of interference fringes are hence complementary quantities. In the double-slit experiment, conventional wisdom held that observing the particles inevitably disturbed them enough to destroy the interference pattern as a result of the Heisenberg uncertainty principle.
However, in 1982, Scully and Drühl found a loophole around this interpretation. They proposed a "quantum eraser" to obtain which-path information without scattering the particles or otherwise introducing uncontrolled phase factors to them. Rather than attempting to observe which photon was entering each slit, they proposed to "mark" them with information that, in principle at least, would allow the photons to be distinguished after passing through the slits. Lest there be any misunderstanding, the interference pattern does disappear when the photons are so marked. However, the interference pattern reappears if the which-path information is further manipulated after the marked photons have passed through the double slits to obscure the which-path markings. Since 1982, multiple experiments have demonstrated the validity of the so-called quantum "eraser".
A simple quantum-eraser experiment
A simple version of the quantum eraser can be described as follows: Rather than splitting one photon or its probability wave between two slits, the photon is subjected to a beam splitter. If one thinks in terms of a stream of photons being randomly directed by such a beam splitter to go down two paths that are kept from interaction, it would seem that no photon can then interfere with any other or with itself.However, if the rate of photon production is reduced so that only one photon is entering the apparatus at any one time, it becomes impossible to understand the photon as only moving through one path, because when the path outputs are redirected so that they coincide on a common detector or detectors, interference phenomena appear. This is similar to envisioning one photon in a two-slit apparatus: even though it is one photon, it still somehow interacts with both slits.
In the two diagrams in Fig. 1, photons are emitted one at a time from a laser symbolized by a yellow star. They pass through a 50% beam splitter that reflects or transmits 1/2 of the photons. The reflected or transmitted photons travel along two possible paths depicted by the red or blue lines.
In the top diagram, it seems as though the trajectories of the photons are known: If a photon emerges from the top of the apparatus, it seems as though it had to have come by way of the blue path, and if it emerges from the side of the apparatus, seem as though it had to have come by way of the red path. However, it is important to keep in mind that the photon is in a superposition of the paths until it is detected. The assumption above—that it 'had to have come by way of' either path—is a form of the 'separation fallacy'.
In the bottom diagram, a second beam splitter is introduced at the top right. It recombines the beams corresponding to the red and blue paths. By introducing the second beam splitter, the usual way of thinking is that the path information has been "erased"—however we have to be careful, because the photon cannot be assumed to have 'really' gone along one or the other path. Recombining the beams results in interference phenomena at detection screens positioned just beyond each exit port. What issues to the right side displays reinforcement, and what issues toward the top displays cancellation. It is important to keep in mind however that the illustrated interferometer effects apply only to a single photon in a pure state. When dealing with a pair of entangled photons, the photon encountering the interferometer will be in a mixed state, and there will be no visible interference pattern without coincidence counting to select appropriate subsets of the data.
Delayed choice
Elementary precursors to current quantum-eraser experiments such as the "simple quantum eraser" described above have straightforward classical-wave explanations. Indeed, it could be argued that there is nothing particularly quantum about this experiment. Nevertheless, Jordan has argued on the basis of the correspondence principle, that despite the existence of classical explanations, first-order interference experiments such as the above can be interpreted as true quantum erasers.These precursors use single-photon interference. Versions of the quantum eraser using entangled photons, however, are intrinsically non-classical. Because of that, in order to avoid any possible ambiguity concerning the quantum versus classical interpretation, most experimenters have opted to use nonclassical entangled-photon light sources to demonstrate quantum erasers with no classical analog.
Furthermore, use of entangled photons enables the design and implementation of versions of the quantum eraser that are impossible to achieve with single-photon interference, such as the delayed-choice quantum eraser, which is the topic of this article.
The experiment of Kim ''et al.'' (1999)
The experimental setup, described in detail in Kim et al., is illustrated in Fig 2. An argon laser generates individual 351.1 nm photons that pass through a double-slit apparatus.An individual photon goes through one of the two slits. In the illustration, the photon paths are color-coded as red or light blue lines to indicate which slit the photon came through.
So far, the experiment is like a conventional two-slit experiment. However, after the slits, spontaneous parametric down-conversion is used to prepare an entangled two-photon state. This is done by a nonlinear optical crystal BBO that converts the photon into two identical, orthogonally polarized entangled photons with 1/2 the frequency of the original photon. The paths followed by these orthogonally polarized photons are caused to diverge by the Glan–Thompson prism.
One of these 702.2 nm photons, referred to as the "signal" photon continues to the target detector called D0. During an experiment, detector D0 is scanned along its x axis, its motions controlled by a step motor. A plot of "signal" photon counts detected by D0 versus x can be examined to discover whether the cumulative signal forms an interference pattern.
The other entangled photon, referred to as the "idler" photon, is deflected by prism PS that sends it along divergent paths depending on whether it came from slit A or slit B.
Somewhat beyond the path split, the idler photons encounter beam splitters BSa, BSb, and BSc that each have a 50% chance of allowing the idler photon to pass through and a 50% chance of causing it to be reflected. Ma and Mb are mirrors.
The beam splitters and mirrors direct the idler photons towards detectors labeled D1, D2, D3 and D4. Note that:
- If an idler photon is recorded at detector D3, it can only have come from slit B.
- If an idler photon is recorded at detector D4, it can only have come from slit A.
- If an idler photon is detected at detector D1 or D2, it might have come from slit A or slit B.
- The optical path length measured from slit to D1, D2, D3, and D4 is 2.5 m longer than the optical path length from slit to D0. This means that any information that one can learn from an idler photon must be approximately 8 ns later than what one can learn from its entangled signal photon.
By using a coincidence counter, the experimenters were able to isolate the entangled signal from photo-noise, recording only events where both signal and idler photons were detected. Refer to Figs 3 and 4.
- When the experimenters looked at the signal photons whose entangled idlers were detected at D1 or D2, they detected interference patterns.
- However, when they looked at the signal photons whose entangled idlers were detected at D3 or D4, they detected simple diffraction patterns with no interference.
Significance
. When all the bulbs are lit, billboard does not reveal any pattern of image, which can be "recovered" only by switching off some bulbs. Likewise interference pattern or no-interference pattern among signal photons at D0 can be recovered only after "switching off" some signal photons and which signal photons should be ignored to recover pattern, this information can be gained only by looking at corresponding entangled idler photons in detectors D1 to D4.
However, what makes this experiment possibly astonishing is that, unlike in the classic double-slit experiment, the choice of whether to preserve or erase the which-path information of the idler was not made until 8 ns after the position of the signal photon had already been measured by D0.
Detection of signal photons at D0 does not directly yield any which-path information. Detection of idler photons at D3 or D4, which provide which-path information, means that no interference pattern can be observed in the jointly detected subset of signal photons at D0. Likewise, detection of idler photons at D1 or D2, which do not provide which-path information, means that interference patterns can be observed in the jointly detected subset of signal photons at D0.
In other words, even though an idler photon is not observed until long after its entangled signal photon arrives at D0 due to the shorter optical path for the latter, interference at D0 is determined by whether a signal photon's entangled idler photon is detected at a detector that preserves its which-path information, or at a detector that erases its which-path information.
Some have interpreted this result to mean that the delayed choice to observe or not observe the path of the idler photon changes the outcome of an event in the past. Note in particular that an interference pattern may only be pulled out for observation after the idlers have been detected.
The total pattern of all signal photons at D0, whose entangled idlers went to multiple different detectors, will never show interference regardless of what happens to the idler photons. One can get an idea of how this works by looking at the graphs of R01, R02, R03, and R04, and observing that the peaks of R01 line up with the troughs of R02. R03 shows a single maximum, and R04, which is experimentally identical to R03 will show equivalent results. The entangled photons, as filtered with the help of the coincidence counter, are simulated in Fig. 5 to give a visual impression of the evidence available from the experiment. In D0, the sum of all the correlated counts will not show interference. If all the photons that arrive at D0 were to be plotted on one graph, one would see only a bright central band.
Implications
Retrocausality
s raise questions about time and time sequences, and thereby bring our usual ideas of time and causal sequence into question. If events at D1, D2, D3, D4 determine outcomes at D0, then effect seems to precede cause. If the idler light paths were greatly extended so that a year goes by before a photon shows up at D1, D2, D3, or D4, then when a photon shows up in one of these detectors, it would cause a signal photon to have shown up in a certain mode a year earlier. Alternatively, knowledge of the future fate of the idler photon would determine the activity of the signal photon in its own present. Neither of these ideas conforms to the usual human expectation of causality. However, knowledge of the future, which would be a hidden variable, was refuted in experiments.Experiments that involve entanglement exhibit phenomena that may make some people doubt their ordinary ideas about causal sequence. In the delayed-choice quantum eraser, an interference pattern will form on D0 even if which-path data pertinent to photons that form it are only erased later in time than the signal photons that hit the primary detector. Not only that feature of the experiment is puzzling; D0 can, in principle at least, be on one side of the universe, and the other four detectors can be "on the other side of the universe" to each other.
Consensus: no retrocausality
However, the interference pattern can only be seen retroactively once the idler photons have been detected and the experimenter has had information about them available, with the interference pattern being seen when the experimenter looks at particular subsets of signal photons that were matched with idlers that went to particular detectors.Moreover, the apparent retroactive action vanishes if the effects of observations on the state of the entangled signal and idler photons are considered in their historical order. Specifically, in the case when detection/deletion of which-way information happens before the detection on D0, the standard simplistic explanation says "The detector Di, at which the idler photon is detected, determines the probability distribution at D0 for the signal photon". Similarly, in the case when D0 precedes detection of the idler photon, the following description is just as accurate: "The position at D0 of the detected signal photon determines the probabilities for the idler photon to hit either of D1, D2, D3 or D4". These are just equivalent ways of formulating the correlations of entangled photons' observables in an intuitive causal way, so one may choose any of those.
The total pattern of signal photons at the primary detector never shows interference, so it is not possible to deduce what will happen to the idler photons by observing the signal photons alone. The delayed-choice quantum eraser does not communicate information in a retro-causal manner because it takes another signal, one which must arrive by a process that can go no faster than the speed of light, to sort the superimposed data in the signal photons into four streams that reflect the states of the idler photons at their four distinct detection screens.
In fact, a theorem proved by Phillippe Eberhard shows that if the accepted equations of relativistic quantum field theory are correct, it should never be possible to experimentally violate causality using quantum effects .
In addition to challenging our common-sense ideas of temporal sequence in cause and effect relationships, this experiment is among those that strongly attack our ideas about locality, the idea that things cannot interact unless they are in contact, if not by being in direct physical contact then at least by interaction through magnetic or other such field phenomena.
Against consensus
Despite Eberhard's proof, some physicists have speculated that these experiments might be changed in a way that would be consistent with previous experiments, yet which could allow for experimental causality violations.Other delayed-choice quantum-eraser experiments
Many refinements and extensions of Kim et al. delayed-choice quantum eraser have been performed or proposed. Only a small sampling of reports and proposals are given here:Scarcelli et al. reported on a delayed-choice quantum-eraser experiment based on a two-photon imaging scheme. After detecting a photon passed through a double-slit, a random delayed choice was made to erase or not erase the which-path information by the measurement of its distant entangled twin; the particle-like and wave-like behavior of the photon were then recorded simultaneously and respectively by only one set of joint detectors.
Peruzzo et al. have reported on a quantum delayed-choice experiment based on a quantum-controlled beam splitter, in which particle and wave behaviors were investigated simultaneously. The quantum nature of the photon's behavior was tested with a Bell inequality, which replaced the delayed choice of the observer.
Rezai et al. have combined the Hong-Ou-Mandel interference with a delayed choice quantum eraser. They impose two incompatible photons onto a beam-splitter, such that no interference pattern could be observed. When the output ports are monitored in an integrated fashion, no interference occurs. Only when the outcoming photons are polarization analysed and the right subset is selected, quantum interference in the form of a Hong-Ou-Mandel dip occurs.
The construction of solid-state electronic Mach–Zehnder interferometers has led to proposals to use them in electronic versions of quantum-eraser experiments. This would be achieved by Coulomb coupling to a second electronic MZI acting as a detector.
Entangled pairs of neutral kaons have also been examined and found suitable for investigations using quantum marking and quantum-erasure techniques.
A quantum eraser has been proposed using a modified Stern-Gerlach setup. In this proposal, no coincident counting is required, and quantum erasure is accomplished by applying an additional Stern-Gerlach magnetic field.