The tangent bundle of the vector space is, and the cotangent bundle is, where denotes the dual space of covectors, linear functions. Given a smooth manifold embedded as the vanishing locus of a smooth function, its tangent bundle is: where is the covector defined by the directional derivative. By definition, the cotangent bundle in this case is where Since every covector corresponds to a unique vector for which for an arbitrary
Since the cotangent bundle X = T*M is a vector bundle, it can be regarded as a manifold in its own right. Because at each point the tangent directions of M can be paired with their dual covectors in the fiber, X possesses a canonical one-form θ called the tautological one-form, discussed below. The exterior derivative of θ is a symplectic 2-form, out of which a non-degenerate volume form can be built for X. For example, as a result X is always an orientable manifold. A special set of coordinates can be defined on the cotangent bundle; these are called the canonical coordinates. Because cotangent bundles can be thought of as symplectic manifolds, any real function on the cotangent bundle can be interpreted to be a Hamiltonian; thus the cotangent bundle can be understood to be a phase space on which Hamiltonian mechanics plays out.
The cotangent bundle carries a canonical one-form θ also known as the symplectic potential, Poincaré1-form, or Liouville1-form. This means that if we regard T*M as a manifold in its own right, there is a canonical section of the vector bundle T* over T*M. This section can be constructed in several ways. The most elementary method uses local coordinates. Suppose that xi are local coordinates on the base manifoldM. In terms of these base coordinates, there are fibre coordinates pi: a one-form at a particular point of T*M has the form pidxi. So the manifold T*M itself carries local coordinates where the x's are coordinates on the base and the p's are coordinates in the fibre. The canonical one-form is given in these coordinates by Intrinsically, the value of the canonical one-form in each fixed point of T*M is given as a pullback. Specifically, suppose that is the projection of the bundle. Taking a point in Tx*M is the same as choosing of a point x in M and a one-form ω at x, and the tautological one-form θ assigns to the point the value That is, for a vector v in the tangent bundle of the cotangent bundle, the application of the tautological one-form θ to v at is computed by projecting v into the tangent bundle at x using and applying ω to this projection. Note that the tautological one-form is not a pullback of a one-form on the base M.
Symplectic form
The cotangent bundle has a canonical symplectic 2-form on it, as an exterior derivative of the tautological one-form, the symplectic potential. Proving that this form is, indeed, symplectic can be done by noting that being symplectic is a local property: since the cotangent bundle is locally trivial, this definition need only be checked on. But there the one form defined is the sum of, and the differential is the canonical symplectic form, the sum of.
Phase space
If the manifold represents the set of possible positions in a dynamical system, then the cotangent bundle can be thought of as the set of possible positions and momenta. For example, this is a way to describe the phase space of a pendulum. The state of the pendulum is determined by its position and its momentum. The entire state space looks like a cylinder, which is the cotangent bundle of the circle. The above symplectic construction, along with an appropriate energy function, gives a complete determination of the physics of system. See Hamiltonian mechanics and the article on geodesic flow for an explicit construction of the Hamiltonian equations of motion.