Cabibbo–Kobayashi–Maskawa matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technically, it specifies the mismatch of quantum states of quarks when they propagate freely and when they take part in the weak interactions. It is important in the understanding of CP violation. This matrix was introduced for three generations of quarks by Makoto Kobayashi and Toshihide Maskawa, adding one generation to the matrix previously introduced by Nicola Cabibbo. This matrix is also an extension of the GIM mechanism, which only includes two of the three current families of quarks.
The matrix
Predecessor: Cabibbo matrix
In 1963, Nicola Cabibbo introduced the Cabibbo angle to preserve the universality of the weak interaction. Cabibbo was inspired by previous work by Murray Gell-Mann and Maurice Lévy, on the effectively rotated nonstrange and strange vector and axial weak currents, which he references.In light of current knowledge, the Cabibbo angle is related to the relative probability that down and strange quarks decay into up quarks. In particle physics parlance, the object that couples to the up quark via charged-current weak interaction is a superposition of down-type quarks, here denoted by d′. Mathematically this is:
or using the Cabibbo angle:
Using the currently accepted values for |Vud| and |Vus|, the Cabibbo angle can be calculated using
When the charm quark was discovered in 1974, it was noticed that the down and strange quark could decay into either the up or charm quark, leading to two sets of equations:
or using the Cabibbo angle:
This can also be written in matrix notation as:
or using the Cabibbo angle
where the various |Vij|2 represent the probability that the quark of j flavor decays into a quark of i flavor. This 2 × 2 rotation matrix is called the Cabibbo matrix.
CKM matrix
In 1973, observing that CP-violation could not be explained in a four-quark model, Kobayashi and Maskawa generalized the Cabibbo matrix into the Cabibbo–Kobayashi–Maskawa matrix to keep track of the weak decays of three generations of quarks:On the left is the weak interaction doublet partners of up-type quarks, and on the right is the CKM matrix along with a vector of mass eigenstates of down-type quarks. The CKM matrix describes the probability of a transition from one quark i to another quark j. These transitions are proportional to |Vij|2.
As of 2010, the best determination of the magnitudes of the CKM matrix elements was:
The choice of usage of down-type quarks in the definition is a convention, and does not represent a physically preferred asymmetry between up-type and down-type quarks. Other conventions are equally valid, such as defining the matrix in terms of weak interaction partners of mass eigenstates of up-type quarks, u′, c′ and t′, in terms of u, c, and t. Since the CKM matrix is unitary, its inverse is the same as its conjugate transpose.
General case construction
To generalize the matrix, count the number of physically important parameters in this matrix, V which appear in experiments. If there are N generations of quarks then- An N × N unitary matrix requires N2 real parameters to be specified.
- 2N − 1 of these parameters are not physically significant, because one phase can be absorbed into each quark field, but the matrix is independent of a common phase. Hence, the total number of free variables independent of the choice of the phases of basis vectors is N2 − = 2.
- * Of these, N are rotation angles called quark mixing angles.
- * The remaining are complex phases, which cause CP violation.
N = 2
N = 3
For the Standard Model case, there are three mixing angles and one CP-violating complex phase.Observations and predictions
Cabibbo's idea originated from a need to explain two observed phenomena:- the transitions u ↔ d, e ↔ νe, and μ ↔ νμ had similar amplitudes.
- the transitions with change in strangeness ΔS = 1 had amplitudes equal to 1/4 of those with ΔS = 0.
For two generations of quarks, there are no CP violating phases, as shown by the counting of the previous section. Since CP violations were seen in neutral kaon decays already in 1964, the emergence of the Standard Model soon after was a clear signal of the existence of a third generation of quarks, as pointed out in 1973 by Kobayashi and Maskawa. The discovery of the bottom quark at Fermilab in 1976 therefore immediately started off the search for the missing third-generation quark, the top quark.
Note, however, that the specific values of the angles are not a prediction of the standard model: they are open, unfixed parameters. At this time, there is no generally accepted theory that explains why the measured values are what they are.
Weak universality
The constraints of unitarity of the CKM-matrix on the diagonal terms can be written asfor all generations i. This implies that the sum of all couplings of any of the up-type quarks to all the down-type quarks is the same for all generations. This relation is called weak universality and was first pointed out by Nicola Cabibbo in 1967. Theoretically it is a consequence of the fact that all SU doublets couple with the same strength to the vector bosons of weak interactions. It has been subjected to continuing experimental tests.
The unitarity triangles
The remaining constraints of unitarity of the CKM-matrix can be written in the formFor any fixed and different i and j, this is a constraint on three complex numbers, one for each k, which says that these numbers form the sides of a triangle in the complex plane. There are six choices of i and j, and hence six such triangles, each of which is called a unitary triangle. Their shapes can be very different, but they all have the same area, which can be related to the CP violating phase. The area vanishes for the specific parameters in the Standard Model for which there would be no CP violation. The orientation of the triangles depend on the phases of the quark fields.
A popular quantity amounting to twice the area of the unitarity triangle is the Jarlskog invariant, . For Greek indices denoting up quarks and Latin ones down quarks, the 4-tensor is doubly antisymmetric,
Up to antisymmetry, it only has non-vanishing components, which, remarkably, from the unitarity of V, can be shown to be all identical in magnitude, that is,
so that
Since the three sides of the triangles are open to direct experiment, as are the three angles, a class of tests of the Standard Model is to check that the triangle closes. This is the purpose of a modern series of experiments under way at the Japanese BELLE and the American BaBar experiments, as well as at LHCb in CERN, Switzerland.
Parameterizations
Four independent parameters are required to fully define the CKM matrix. Many parameterizations have been proposed, and three of the most common ones are shown below.KM parameters
The original parameterization of Kobayashi and Maskawa used three angles and a CP-violating phase angle. is the Cabibbo angle. Cosines and sines of the angles are denoted and, for respectively."Standard" parameters
A "standard" parameterization of the CKM matrix uses three Euler angles and one CP-violating phase. is the Cabibbo angle. Couplings between quark generations and vanish if. Cosines and sines of the angles are denoted and, respectively.The currently best known values for the standard parameters are:
Wolfenstein parameters
A third parameterization of the CKM matrix was introduced by Lincoln Wolfenstein with the four parameters λ, A, ρ, and η. The four Wolfenstein parameters have the property that all are of order 1 and are related to the "standard" parameterization:The Wolfenstein parameterization of the CKM matrix, is an approximation of the standard parameterization. To order, it is:
The CP violation can be determined by measuring −.
Using the values of the previous section for the CKM matrix, the best determination of the Wolfenstein parameters is: