alpha-2-Macroglobulin is a large plasma protein found in the blood. It is mainly produced by the liver, and also locally synthesized by macrophages, fibroblasts, and adrenocortical cells. In humans it is encoded by the A2M gene. Alpha 2 macroglobulin acts as an antiprotease and is able to inactivate an enormous variety of proteinases. It functions as an inhibitor of fibrinolysis by inhibiting plasmin and kallikrein. It functions as an inhibitor of coagulation by inhibiting thrombin. Alpha-2-macroglobulin may act as a carrier protein because it also binds to numerous growth factors and cytokines, such as platelet-derived growth factor, basic fibroblast growth factor, TGF-β, insulin, and IL-1β. No specific deficiency with associated disease has been recognized, and no disease state is attributed to low concentrations of alpha-2-macroglobulin. The concentration of alpha-2-macroglobulin rises 10-fold or more in the nephrotic syndrome when other lower molecular weight proteins are lost in the urine. The loss of alpha-2-macroglobulin into urine is prevented by its large size. The net result is that alpha-2-macroglobulin reaches serum levelsequal to or greater than those of albumin in the nephrotic syndrome, which has the effect of maintaining oncotic pressure.
Structure
Human alpha-2-macroglobulin is composed of four identical subunits bound together by -S-S- bonds. In addition to tetrameric forms of alpha-2-macroglobulin, dimeric, and more recently monomeric aM protease inhibitors have been identified. Each monomer of human alpha-2-macroglobulin is composed of several functional domains, including macroglobulin domains, a thiol ester-containing domain and a receptor-binding domain. Overall, alpha-2-Macroglobulin is the largest major nonimmunoglobulin protein in human plasma. The amino acid sequence of alpha-2-macroglobulin has been shown to be 71% the same as that of the Pregnancy zone protein.
Function
The alpha-macroglobulin family of proteins includes protease inhibitors, typified by the human tetrameric alpha-2-macroglobulin ; they belong to the MEROPS proteinase inhibitor family I39, clan IL. These protease inhibitors share several defining properties, which include the ability to inhibit proteases from all catalytic classes, the presence of a 'bait region' and a thiol ester, a similar protease inhibitory mechanism and the inactivation of the inhibitory capacity by reaction of the thiol ester with small primary amines. aM protease inhibitors inhibit by steric hindrance. The mechanism involves protease cleavage of the bait region, a segment of the aM that is particularly susceptible to proteolytic cleavage, which initiates a conformational change such that the aM collapses about the protease. In the resulting aM-protease complex, the active site of the protease is sterically shielded, thus substantially decreasing access to protein substrates. Two additional events occur as a consequence of bait region cleavage, namely the h-cysteinyl-g-glutamyl thiol ester becomes highly reactive and a major conformational change exposes a conserved COOH-terminal receptor binding domain . RBD exposure allows the aM protease complex to bind to clearance receptors and be removed from circulation. Tetrameric, dimeric, and, more recently, monomeric aM protease inhibitors have been identified. alpha-2-Macroglobulin is able to inactivate an enormous variety of proteinases. It functions as an inhibitor of fibrinolysis by inhibiting plasmin and kallikrein. It functions as an inhibitor of coagulation by inhibiting thrombin. Alpha-2-macroglobulin has in its structure a 35 amino acid "bait" region. Proteinases binding and cleaving the bait region become bound to α2M. The proteinase-α2M complex is recognised by macrophage receptors and cleared from the system. alpha-2-Macroglobulin is known to bind zinc, as well as copper in plasma, even more strongly than albumin, and such it is also known as transcuprein. 10-15% of copper in human plasma is chelated by alpha-2-macroglobulin.
Disease
alpha-2-Macroglobulin levels are increased when the serum albumin levels are low, which is most commonly seen in nephrotic syndrome, a condition wherein the kidneys start to leak out some of the smaller blood proteins. Because of its size, alpha-2-macroglobulin is retained in the bloodstream. Increased production of all proteins means alpha-2-macroglobulin concentration increases. This increase has little adverse effect on the health, but is used as a diagnostic clue. Longstanding chronic kidney failure can lead to amyloid by alpha-2-macroglobulin. A common variant of alpha-2-macroglobulin leads to increased risk of Alzheimer's disease. alpha-2-Macroglobulin binds to and removes the active forms of the gelatinase from the circulation via scavenger receptors on the phagocytes.